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Abstract

In this work @ method is developed for the simulation of two-dimensional
systems of discrete convex polygonal particles. The particles themselves are
rigid while the inierparticle contacts are deformable. The contacts are termed
ceformable because areas of overlap that are found between adjacent particles
are interpreted as surface deformations. The contact forces between particles are
calculated from cn elastic-viscous-plastic mode! based on the area of overlap
and the rate of changs of the area of overiap. The magnitude of the contact force
is limited by the strength of the material. If the contact force reaches this limit,
further deformation is non-recoverable.

Cover: Simuluted ridging of a sheet of unibroken ice covering a lead (with
virtual penguin).

For convarsion of S metric units to U.S./British customary units of measurement
consultASTM Standard E380, Metric Practice Guide, published by the American
Soclety for Testing and Matericls, 1916 Race St., Philadelphia, Pa. 19103.
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Numerical Simulation of Systems of
Multitudinous Polygonal Blocks

MARK A. HOPKINS

1.INTRODUCTION

Macroccopic systems of discrete particles in motion, given the general name of
granular flows, occur in many industrial and geophysical processes. Examples of
such flows are found in powder technolugy, in gr-in handling, in slurry transport by
pipeline, in avalanches, and in the transport of sediment and ice by river and ocean.

The Arctic Basin, covered with a permanent ice pack, is the grandest of granular
flows. The particles in this system areice floes with diameters of 1-10km. The ice pack
circles the North Pole in a clockwise path to merge with the Trans-Polar Drift and
leaves the Arctic through the Fram Strait between Greenland and Spitsbergen.
Convergence of the ice pack produces local failure or pressure ridging of the ice-
covered leads separating the floes. The growing pressure ridges are siowly deforming
granular systems with block-like particles of about 1 a1 in length.

A computer simulation was applied to granular flows in 1980 by Otis Walton at
Lawrence Livermore. Walton’s work was based on the discrete element quasi-static
simulations of rock assemblies pioneered by Peter Cundall (1971,1974, 1980, Cundall
et 2l. 1978). Walton (1980) describes the conceptual basis for a two-dimensional
Newtonian simulation of systems of polygonal particles, which he calls the Discrete
Interacting Block System (DIBS). In the DIBS code, the particies themselves are rigid.
Internal deformation of the particles is not modeled and therefore, their shape does
not change in response to applied forces. Interparticle contacts, the areas of overlap
between adjacent polygons that change fron: time step to time step, are interpreted
as surface deformations.

In the present work a similar method is developed for the simulation of two-
dimensional systems of discrete, convex, polygonal particles. While the gereral
development follows Walton, several improvements are introduced. The most im-
portant is the use of an elastic-viscous~plastic contact force model based on the area
of overlap and the rate of change of the area of overlap. The magnitude of the contact
forceislimited by the compressivestrength of the material. If the contact force reaches
this limit, further deformation is non-r. . ~verable. A Mohr-Coulomb frictional force
actstangentially at the point of contact. This work describes several features useful for
sea ice and river ice modeling, including flexural failure of slender blocks and a
dynamic beam simulation for modeling failure in intact ice sheets. One further
improvement over previous methods is the clarity and relative simplicity of the
computer code itself.

The goal of a dynamic simulation of a system of discrete particles is to reproduce
the significant behavior of the real system. The simulation may be used to perform a
numerical experiment. A numerical experiment based on a particle simulation has
several advantages overa corresponding physical experiment. The first advantage is
the eas2 of obtaining statistical averages of variables descriptive of the system’s
behavior. This is because the particle positions and velocities and the forces exist




explicitly in the simulation and thus ihe various moments, stresses and energies may
be easily found. The second advantage is the ability to selectively manipulate the
physics of a problem in ways that are impossible in a physical experiment. Examples
would be the elimination of gravity, the elimiiation of temperature effects in ice
experiments, and the use of periodic boundaries to remove the inhomogeneities
present in a material near physical boundaries. The third advantage is that there are
noscalelimitations in numerical experiments. Large problems likeice ridging or river
ice jarnming need not be scaled down as they must be in a laboratory. The shortcom-
ings of numerical experiments conducted with dynamic simulations result from the
crudeness of the physical models of the interactions between individual blocks and
between blocks and the surrounding fluid and the assumed homogeneity of the

material.

2. CONSTRUCTION OF THE SIMULATION

In general terms, a particle simulation is a computer program that models the
Newtonian dynamics of a large system of discrete particles. The simulation stores the
shape and the instantaneous position and velocity of each particle. The contact and
body forces on each particle are calculated at each time step and the particles are
moved to new locations with new velocities that depend on the forces.

The simulation of systems of asymmetrical polygonal particles is more « - mpli-
cated than the simulation of systems of symmetrical particles, such as disks or
spheres. The complexity of the simulation is a consequence of the complexity of :he
relationships among the particles and the difficulty in defining them. The relation-
ships change constantly as the system deforms time step by time step. The algorithm
must indjvidually define and assess the relationships among the many points and
sides of the particles to discover those that are in contact. Particles are defined to be
in contact when their areas cvorlap.

After the algorithm has discovered the particles in contact, it must calculate the
forces between them. In this work a deformable contact model is used. The contact
model is called deformable because the overlaps between neigi:boring particles,
which change from time step to time step, are interpreted as deformations of the
surfaces in contact. The deformations are treated as springs and dashpots in compres-
sion that generate restoring or repulsive forces between the particles. The interpar-
ticle force has an elastic component proportional to the area of overlap and a viscous
component proportional to the rate of change of the area of overlap. Mohr-Cuulomb
frictional forces act tangentially at the point of contact. Both sliding contacts and static
contacts are modeled. The effect of the forces on the motions of the particles is found
by integrating the equations of motion for each particle at each time step.

The six main components of a particle simuladon are:

1. Storage of the instantaneous position and velocity of each particle.

2. Discovery of the particles that are in contact with other particles at a giver
time.

3. Calculation of the force between those particles.

4. Integration of the equations of motion for each particle at each time step.

5. Calculation of statistical averages of variables of interest.

6. Construction of a visual record of the system’s motion.

2.1 Domain of the simulation

The domain of the simulation is the area that the particles inhabit. The boundaries
of the domain may be open or closed. Open boundaries typically devend on gravity
to confine the particles. A closed boundary ma/ be of any arbitrary shape defined by




asufficient number of closely spaced particles. A closed boundary may be ejther fixed
or movable. The motions of movable boundaries may be either stress or strain
contr.sllel. Alternatively, periodic boundaries may be used to mcdel an unconfined
domain by causing the particles that leave the domain at one boundary to reenter at
" the opposite boundary. The equations that control the periodicity are

if x; > Ly then xj = xj - L (ia)
if x; < 0.0 then xj = x; + Lx (1b)

where the subscript i denotes a particle i in a domain of length Lx. The periodic
boundary condition creates thetopological equivalent of acylindrical domain formed
by joining two opposmg boundaries. Either the x or y boundaries or both may be
periodic.

2.2 System configuration

The simulation algorithm must keep a record of the configuration of the system at
each time step. The system configuration consists of the position, orientation, velocity
and shape of each of the N particles (henceforth polygons). The position of each
polygonisstored in the arrays x(N) and y(N). The orientation of each polygonis stored
in the array 6(N). The x and y components of the translational velocities are stored in
the arrays 1:(V) and ©(N). The rotational velocities are stored in the array w(N). Each
of the polygons has Nv vertices stored in an array Nv(N). The shape of each polygon
is defined by the length of the rays, from the center of mass of the polygon to each
vertex, stored in the array (N,Numax) and the angles, measured between a reference
point and each ray, stored in the array a(N,Nvmax). The mass and pclar moment of
each polygon are stored in the arrays mass(N) and Jp(N). The system configuration is
saved at the end of a given run for restart.

In addition, the following information is carried by the simulation algorithm, but
is not part of the system configuration saved in the restart files. The components of the
vectors defining the location of the vertices of each polygon relative to its center of
mass are carried in the arrays rx(N,Nvmax) and 7y(N,Nvmax). The cosine and sine of the
shape-defining angles a(N,Nvmax) are catried for the efficient calculation of rx(N,Nvmax)
and ry(N,Nvmax) at each time step.

2.3 Search process

The search proccdure performs the task of ﬁndmg neighboring polygons. The
simplest method of going about asearchis by choosing one polygon from the flow and
thensearchingamongstall of theremaining polygons for those thatarein contact with
the chosen polygon. This process is then repeated one by one for the remaining
polygons. However, in a system containing N polygons, N2/2 individual searches
would be required.

One way of shortening the search process is to limit the search about the chosen
polygon to its immediate neighborhood. A neighborkood about a polygon is defined
by a uniform square grid superimposed on the domain. The width of the grid cells L¢
must be at least as large as the largest dimension of the largest polygon. A three-
dimensional array grid(i j,k) is defined such that the i and j dimensions of the array
correspond to the two-dimensional gnd while the third dimension stores the indices
of the polygons with centers in cell i.

The i and j location in the grid of the center of mass of polygon k are given by

i=1+irtlx(k)/Ld (2a)
j=1+intly()/Ld. (2b)




The presence of polygon k in cell i,j is recorded in the grid arrav

grid[ijngrid(i )] = k ' ®

where ngrid(i,j) is the current iiumber of polygons with centers in cell i j. The column,
row address of polygon k is stored in a pair of one-dimensional arrays

invx(k) =i ‘ (4a)

invy(k) =j . (4b) .
These arrays provide a means of finding the grid location of a given polygon and
searching its immediate surroundings for neighbors or pending contacts. Figure 1
shows a polygon in the center of a block of grid cells that is part of the grid overlying
the flow domain. This block of .dnz cells is the search neighborhood about the
polygon. A second polygon is shown near the perimeter of the search neighborhood.
The (i,j) locatior of the central or home polygon in the grid is given by eq4aand b. The
number of the neighbor or near polygon at (i + 1,j + 1) in the grid is given by eq 3.
The search strategy discussed above is implemented in the following subroutines
GRIDFILL and SEARCH. The subroutine GRIDFILL reinitializes the grid, puts each
polygon into its proper grid location, and fills the inverse addresses, arrays invx and

invy. ‘

j+1 .
/P\ \\/
J .
| W4
1
l

i-1 i i+1
Figure 1. Search neighborhood surrounding a polygon.



2.3.1 Subroutine GRIDFILL

Doi=1,dimi
Do j = 1,dimj
ngrid(i,j} =0
End Do
End Do

Doi=1N
gi = 1+int(x(i)/Lc)
gj = 1+int(y(i)/Lc)

" ngrid(gi,gj} = ngrid(gi,gj}+1
grid(gi,gjngrid(gi,gj) = i

invx(i) = gi
invy(i) = gj
End do
"End

In the SEARCH subroutine, a search is conducted around each polygon in the flow
field. The number of the central or home polygon is nh. The inverse arrays invx and
invy are used to find thei,j position of the hcme polygon. The search extends over the
central grid cell and the eight surrounding cells about nh. The munber of a neighbor-
ing or near polygon in the grid is nn. Count is the number of the current pair of poly-
gons in the list of pairs of near neighbors being compiied. The subroutine CONTACT,
discussed below, discards neighbors separated by & distarce greater than e.

2.3.2 Subroutine SEARCH
. Donh=1N
Do i = invx(nh)-1, invx(nh)+1
Do j = invy(nh)-1, invy(nh)+1
Do k = 1,ngrid(,j |
nn = grid(i,j k)
If (nn .1t ‘nh) then

‘neighbor = .false.
Call Contact(nn,nh,neighbor)

If (neighbor) then
count = count+1
home(count) = nh

near(count) = nn
nnear(nh) = nnesr{nh)+1
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End T
End Do
End Do
End Do

End

Because the distance traveled by particles bet'veen time steps may be extremely
small, it is efficient to discard neighbcring pairs separated by a distance greater than
&£.Thechosen value ofe depends on theaverage distance traveled by particles between
calls to the SEARCH subroutine. A brute force algorithm is used to find the smallest
separation between pzirs of polygons. Every vertex on one polvgon is iested against
every side of the other polygon until a vertex is found that is closer than €. The process
is performed by the CONTACT subroutine, called from the SEARCH subroutine.

2.3.3 Subroutine CONTACT(nh,nn,neighbor)
C Make side vectors for NEAR polygon:
Do j=1,Nv(nn) |
jp = 1+mod(j,Nv(nn))

ssx(j) = (rx(nn,jp)+rx(nn,j))/length(nn,j)
ssy(j) = (ry(nn,jp)+ry(nn,j))/lengthinn,j)

End Do

C Find vertex of HOME polygon closest to side of NEAR polygon:
pt=1
Do While(.not. ncighbor .and. pt .le. Nv(nh))

dx = x(nh)+rx(nh,pt)-x(nn)
dy = y(nh)+ry(nh,pt)-y(nn)

maxsep = 50.0
De j=1,Nv(nn)
xprod = ssx()*(dy-ry(nn,j))-ssy(j*(dx-rx(nn,j))
if (xprod .It. maxsep) maxsep = xprod
End Do
if (maxsep =.ge. -epsilon) neighbor = .true.
pt=pt+l

End Do




If (.not. neighbor) then
{Repeat process - exchanging polygons)
End If

End

There is a discontinuity in the numbering of vertices encountered when moving
around the polygon in the counter-clockwise direction. If, when k equals Nu(i) (the
number of vertices on polygon i), k is incremented, then k would equal Nu(i)+1 rather
than 1. The CONTACT subroutine uses the mod function to cross the discontinuity.
Thus, incrementing the vertex counter k by 1 is done using the equation

k =1+ mod[k,Nv(i)]. v ' (5)
The corresponding equation for‘decrementing kby1lis
k =1 + mod{k-2+No(i),No(i). . | | (©)

In summary, to begin the search process, the entire system of polygons is sorted
into a grid. By use of the grid, the immediate neighborhood of each polygon is
examined to discover pairs of neighboring polygons. The spatial relationship be-
tween each pair of polygons is studied to determine the minimumseparation distance
between the polygons. If this distance is less thap some small value g, then the
nuinbers of the two polygons are stored in the list of near neighbors or poter .al
contacts. The value of € chnsen depends on the average distance traveled by p..icles
between calls to the SEARCH subroutine.

Because the simulation time step is short, the relationship between neighboring
pairs of polygons changes little from one time step to the next. Ther::tore, it is possible
to drastically increase the efficiency of the simulation by calling the SEARCH
subroutine at intervals of many time steps. The length of the interval depends on the
rate of deformation of the system. In practice, as the interval is increased, a point of
diminishing returns is reached. This depends on the relative time required to perform
the search versus the time required to calculate contact forces.

2.4 Interparticle forces

The calculation of the inter-particle forces begins with the list of pairs of neighbor-
ing polygons compiled in the search process described above. A pair of polygons is
defined to be in contact when their areas intersect. The intersection between the two
polygons, which changes from time step to time step, is interpreted as deformation
of the surfaces in contact. The deformation is treated as a spring and dashpot in
compression, which generates a repulsive force between the polygons.

The important features of the force calculation strategy are to:

1. Discover whether or not a given pair of polygons intersect.

2. Calculate the area of intersection and the location of the centroid of the area of
intersection. The centroid of the area of intersection defines the point of action of the
contact force between the pair of polygons.

3. Define a line of contact between the two pelygons and a local coordinate frame
with axes normal (n) and tangeniial (t) to the line of contact.

4. Compute the normal and tangential forces between the polygons and their
respective moments in the local (n,t) coordinate frame.

5. Convert the forces and moments to the global (x,y) coordinate frame.




Polygon i

Polygon J

Figure 2. Pair of intersecting convex polygons.

2.4.1 Finding the area of intersections of two cortvex polygons

A typical contact is shown in Figure 2. One polygon is called the home polygon and
the other is called the near polygon, corresponding to their positions in the list of
neighboring pairs compiled in the SEARCH procedure. The array numbers of the
home and near polygons are i and j respectively. ,

The procedure used to find the area of intersection is based on an algorithm for
finding the intersection of two convex polygons developed by O’Rourke et al. (1982).
This algorithmand othersarediscussed in detail by Preparata and Shamos (1985). The
general idea is to advance in a counter-clockwise direction around the perimeters of
the two polygons, moving along one side of one polygon at a time. If the advances are
made correctly, the intersection points, where the sides of the polygons cross, will be
discovered in counter-clockwise order. There are three rules for advancing, which are
discussed below.



Let the verticesii + 1 and jj + 1 in Figure 2 be called the current vertices of polygons
iand jrespectively. Similarly, let the side of polygoni from vertex ii to vertex ii + 1 and
the side of polygon j from vertex jj to vertex jj + 1 be callzd the current sides. The
current sides of the polygons are defined, with a counter-clockwise sense, by the
vectors Vii and Vjj

Vii = mr(i,ii+1) + rx(i, i) ' {7a)
Vjj = mj,jj+1) + rx(j jj) - : (7b)

where rr(i,ii) is the vector from the center of mass to vertex ii of polygon i.

Aline through the two vertices iiand i + 1 of polygon i, extending to infinity inboth
directions, divides the plane in half. Polygon i lies in the left half-plane. Similarly, a
line through the two vertices jj and jj + 1 of polygon j, extending to infinity in both
directions, also divides the plane in half. Polygon j lies on the left side of this line. The
intersection of polygons i and j lies in the intersection of the half-planes to the left of
each line.

- The rules for advance around the perimeters of the polygons depend on whether
the current vertices ii + 1and jj + 1 lie inside or outside of the interior (left) half-plane
defined by the vector on the current side of the other polygon. The three rules are:

1. If one lies inside and one lies outside, then advance on the polygon whose
current vertex lies outside.

2. If both lie inside, then extend the vectors Vii and Vjj to infinity. Advance on
the polygon whose vector tip now lies outside.

3. If both lie outside, then extend the vectors Vii and Vjj to infinity. Advance on
the polygon whose vector tip now lies inside.

An advance is made by incrementing ii or jj. Before each advance, the current sides
are tested for intersection.

Thethreerules foradvanceareimplemented using cross-products. Before defining
the cross-products, it is efficient to define an additional vector from vertex ii on
polygon i to vertex jj on polygon j

Vii = l’(i) + rr(],]]) - r(l) - ﬂ’(l',il') ) (8)

where the vector r(i) defines the location of the center of mass of polygon i. Using the
vectors Vii, Vij, Vjj and p = 1, we define two cross-products

xprodij = Vii x (Vij + BVjj) ' (9a)
xprodji = Vjj x (<Vij + BVii) . (9b)

If xprodij is positive, then vertex jj + 1 lies in the interior half-plane defined by Vii.
Similarly, if xprodji is positive, then vertex ii + 1 lies in the interior half-plane defined
by Vjj. If both are positive or both are negative, then, following rule 2 or rule 3, two
more cross-products xprodij’ and xprodji’ are calculated using eq 9a and b with a large
value of B. As with xprodij, if xprodij’ is positive, then the extended vertex jj + 1 lies in
the interior half-plane defined by Vii. Similarly, if xprodji’ is positive, then the
extended vertex ii + 1 lies in the interior half-plane defined by Vijj.

All intersection points will be discovered in, at most, 2[Nuv(i) + Nv()] advances.
However, if the values of iiand jj at which the first intersection is discovered are used
to initialize ii and jj at the next time step, this may be reduced to approximately Nu(i)
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Figure 3. Sequence of advances around the perimeters of
the two polygons and the corresponding rules.

+ Nu(j) advances. If Nu(i) + Nov(j) : ivances are made without finding at least one
intersection, then the two polygons must intersect completely or not at all.

Figure 3 shows the two polygons from Figure 2. The numbers adjacent to the
vertices correspond to the order of advance. The initial current vertices are those with
zeroes adjacent. The Roman numerals I, II and III, adjacent to the sides of the
polygons, denote which of the three rules applies to that advance. This algorithm is
implemented in the subroutine INTERSECT. The integer counters nint and nadvkeep
track of the number of intersections and the number of advances.

2.4.2 Subroutine INTERSECT(i,j)
nint=0
nadv=0

done = .false.

dx = x(j-x(i)
dy = y(j-y(i)

ii=1
ji=1

Do While (.not. done)
nadv = nadv+1

C Make vectors and cross-products:

10




iip = 1+mod(ii,Nv(i))
jip = 1+mod(jjNv(}))

viix = rx(i,iip)-rx(i,ii)
vily = ry(i,iip)-ry(i,ii)

vipe= o)t
vijy = ry(j,jip)-ry(.jj)

vijx = dx+rx(j,jj)-rx(i,ii)
vijy = dy+ry(ij-ryGii)

xprodij = viix*(vijy+vjjy)-viiy*(vijx+vjjx)
xprodji = vjjx*(-vijy+viiy)-vjjy*(-vijx+viix)
xprodijo = viix*vijy-viiy*vijx
xprodjio = -vjjx*vijy+vijjy*vijx

C Check for intersection:

If (xprodij*xprodijo .It. 0.0 .and.
xprodji*xprodjio .It. 0.0) then

nint = nint+1
{store intersection point}
If (intersection .eq. first intersection) done = ;true.
End If
C Advance on perimeter of polygon i or j depending on cross-products:
If (xprodij*xprodji .1t. 0.0) then
COne (i or j) is in and one is out:
If (xprodij .gt. 0.0) then
Cjisin, advanceoni:

ii =iip

Ciisin, advance onj:
ji=jp
End If
Else

C Extend vector Vjj and make a new cross-product ij:

1




mag = 1.0e30
xprodijp = viix*(vijy+mag*vjjy)-viiy*(vijx+mag*vjjx)
If (xprodij .gt. 0.0) then
CBothiand jarein:
If (xprodijp .gt. 0.0) then
C Extended i is out, advance on i:
ii = iip
Else
C Extended j is out, advance on j:
ji=iip
End If
Else
C Both i and j are out:
If (xprodijp .gt. 0.0) then
C Extended j is in, advance on j:
ji=ip
Else
- /. C Extended i is in, advance on i:
ii = iip
End If
End If
End If
If (nadv .eq. 2*(Nv(i)+Nv(j))  done = .true.
End Do
{calculate intersection area if there is any)
End

To calculate the area of the intersection of two polygons, the interior vertices must
be known as well as the intersection points. Interior vertices are always signaled by
a move following rule 2. The algorithm assures that the vertices of the area of
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intersection, which consist of one or more pairs ot intersection points, and the interior
vertices will be discovered in counter-clockwise order. Therefore, it is simple to
calculate the area of intersection by dividing it into triangles formed by vertices 1. k
and k + 1. Similarly, the location of the centroid of the area of intersection is the area
weighted sum of the location of the centroids of the triangles.

The line of contact between the polygons is the line connecting the pair of
interection points. In exceptional cases where there are two or more pairs of
intersection points, the definition of a line of contact may be somewhat arbitrary. A
local coordinate frame is defined with directions normal (n) and tangential (t) to the
line of contact. It is oriented such that the normal axis points toward the center of mass
of the home block. '

2.4.3 Calculating the inter-particle force

The force between a pair of intersecting polygons is calculated froin the area of
intersection, defined in the local n,t coordinate frame, and acts at the centroid of the
area of intersection. An Elastic-Viscous-Plastic (EVP) normal force model is used
with an incremental Mohr-Coulomb tangential force model. The elastic component
of the EVP model is proportional to the area of intersection and the viscous compo-
nent is proportional to the rate of change of the area of intersection. If the sum of the
elasticand the viscous components, which actin parallel, is greater than the compres-
sive strength of the material at the contact surface, then the material is assumed to fail
plastically. Tensile forces are not considered in this model. Because the plastic
deformation is non-recoverable, it is necessary to account separately for total elastic
and total combined deformation for each pair of polygons in contact. Total elastic
deformation is stored in the variable Areze and the total combined deformation in the
variable Area. The tangential force increases incrementally because of slip between
the polygons at the contact surface and is limited by the coefficient of friction and the
magnitude of the normal force.

The EVP contact force model corrects a problemr present in previous polygonal
particle simulations (Cundall 1980, Walton 1980), in which the viscous damping force
is proportional to thenormal component of the relative velocity between the polygons
at the point of contact. This damping method is unappealing in vertex/vertex and
vertex/side contacts because the damping force is a maximum when the area of
intersection is a minimum, namely, when the vertex of one polygon first contacts the
other polygon. In contrast, a viscous damping force proportional to the rate of change
of the area of intersection is small when the point first contacts the other polygon.
However, the latter damping method does not dissipate enough energy in point/
point and point/side contacts to model highly inelastic behavior. The essential
ingredient in modeling inelastic behavior is the plastic limit on the stress across the
plane of contact, which qualitatively accounts for the initial crushing that takes place:
in vertex/vertexand vertex/side contacts. In the present model, plastic yielding does
not alter the shape of the polygons involved. Following rebound, the polygons regain
their original undeformed shapes. However, except for increasing complexity, noth-
ing prevents the polygon’s shape from being recalculated as it deforms.

The contact force model is based on pseudo-material properties of the polygons—

a stiffness kne, a viscous damping constant knv, a compressive strength 6 and a -

coefficient of friction . The dimensions of kneand knv are force per unit area and force-
time per unit area respectively. Ideally, the stiffness should be based on the modulus
of elasticity of the material being modeled. For stability, the time step used is a small
fraction (typically 1/10) of the period of the highest frequency expected in the
simulation. This is approximately the frequency of free oscillation (1/2x)(kne/m)1/2,
where m is the mass of the smallest polygon divided by the nominal maximum contact
width.
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Figure 4. Interparticle contact force model.

In problems where the elastic properties of the material must be accurately
modeled, for example in the propagation.of elastic waves through an assembly of
particles, a realistic stiffness must be used. However, in problems in which the forces
are a function of gravity and the geometric angularity of the blocks, such as in the ice
ridging and shearbox simulations shown in sections 4.14.3, the stiffness may be
lessened to increase the time step and thus make it possible to simulate larger or
longer experiments. The amount depends on the magnitude of the expected forces
and the amount of overlap that can be tolerated between blocks in contact without
compromising their geometric integrity. ’

The viscous damping constant kny is chosen as a fraction of the critical damping
value 2(kne m)1/2 based on the stiffness and the minimum mass per meter of contact
width, m, defined above. The compressive strength o of the material must be scaled
if the stiffness is reduced in the interest of computational speed.

A pair of polygons in contact is shown in Figure 4. The home and near polygons are
denoted by the subscripts & and n respectively. The moment arms from the centroid
of the area of intersection to the centers of mass of the polygons are

armp, = rc - r(nh) . (10a)

ahnn = xc - t{nn) o (10b)
where nh and nn are the numbers of the home and near polygons and the vector rc
defines the location of the centroid of the area of intersection. '

The relative velocity of the home polygon with respect to the near polygon at the
point of contact is ‘

==

Kne

Figure 5. Normal force model.
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Vh/n = Vh + @p X armp - Vp - @y X armp . . (1)

A simplified representation of the normal component of the contact force model is
shown in Figure 5. The details of the model are presented in the following equations.
It is worth noting that, although the spring and dashpot in the figure are linear, the
area of intersection, and thus, the elastic and viscous force components, change
nonlinearly, especially in vertex/side and vertex/vertex contacts. The change in the
total area of intersection during the previous time step At is

AArean = Arean — Arean-1 (12)
where the superscript n denotes the current time. It is initially assumed that the
incremental deformation AArean was elastic. In this case the elastic component of the
normal force exerted on the heme particle is

Fne™ = kne (Areaen =1 + AArean) ' ‘ (13)

where kpe is the normal elastic stiffness. The average rate of change of the area of
intersection during the previous time step is

(AArea/An-1/2 = AArean/At . (14)
The current rate of change of the area of intersection is a pproximately'

(AArea/At)n = 3/2 (AArea/AbDn-1/2 —‘1/2 (AArea/Af)n-3/2, (15)
The viscous component of the normal force exerted on the home polygon is then

Fpy® =k, (AArea/At)n | (16)
where kny is the normal viscous damping constant. The maximum compressive force
that the contact may supportis the product of the compressive strength of the material

Oc and the breadth of the contact surface lengthch. This maximum will be referred to
as the plastic limit force Fp

Fpn =0¢ Iengthg" . (17)
The breadth of the contact surface is the distance between the intersection points in
igure 3 above. If the sum of the elastic and viscous components of the normal force
is less than the plastic limit force, then the normal force is equal to that sum
FnP = FpeM + Fny? (18)
and the incremental change in the total area (eq 12) is added to the elastic area
Areaeh = Areaen =1 + AArean . (19)
If the sum of the elastic and viscous components of the normal force is greater than
orequal to the plastic limit force, then the normal force is equal to the plastic limit force
I
Fnn = Fpn. 20)

In this case, since there is motion across the spring and dashpot, part of the incremen-
tal increase in the total deformation AArean will be plastic and the remainder will be
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elastic. The incremental increase in the elastic deformation AArea,n is calculated by
- solving adifferential equationin finite difference form derived from the balanceof the
plastic limit force (eq 17) and the sum of the elastic (eq 13) and viscous forces (eq 16)

(AAreae/At)n = (l /knv)(Fpn - kne Areaen) . (21)

Inthesimulation, eq21 is solved for Areas" using a Runge-Kutta or other approximate
solution. Finally, since tensile forces are not considered, the rormal force on the home
polygon must be greater than or equal to zero (the n direction points toward the heme
particle).

The mechanics of the EVP normal contact force model are qualitatively illustrated
in Figure 6, which shows the results of numerical experiments in which asquare block
was released from a position just above a flat surface with an initial downward

~ velocity. Figure 6a pertains to a vertex/side contact in which the block falls vertex

first. Figure 6b pertains to a side/side contact in which the block falls edge first. The
stiffness and viscosity were held constant. Each figure shows results for compressive
strengths 6. = 2 and 10 MPa. The velocity trace begins at the maximum of the left axis
ineach case. The penetration distances are plotted to differentscales in Figures 6aand
6b.

In each figure, the contact force traces for the two values of compressive strength
are qualitatively different. At the higher value of compressive strength, the contact

G, =10 MPa
F \)
(MN) (m/s)
2MPa
&
a. For a point on side contact.
F G, = 10 MPa v
(MN) (m/s)

2 MPa

5
b. For a side on side contact.

Figure 6. Normal contact force versus depth of penetration 8.
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Figure 7. Tangential force model.

forces are elastic-viscous (eq 18). At the lower value of compressive strength, the
contact forces during loading are plastic (eq 17). _

A representation of the tangential contact force model is shown in Figure 7. The
tangential force F increases because of incremental slip between the polygons at the
contact surface in the tangential direction (Waiton 1980). The incremental slip
occurring between the polygons from time step to time step creates the tangential
force by compressing the spring in the figure. The magnitude of the tangential force
is not allowed to exceed uFp, where uis the coefficient of friction. The tangential force
on the home polygon is

Fin=Fin-1-kie Al(Vh/n + iR =172 (22)
wherekie is the tangential elastic stiffness. The forces on the home polygon intheglobal

x,y coordinate irame are

Fxn = annn - nyF[n (233)

Fyn = nyan + antn (Zsb) )

where nyxand ny are the components of the normal vector in the local coordinate frame.
The force on the near polygon is equal and opposite. The moments Myn on the honte
particle and Mnpn on the near polygon are

Mpn = armpn x Fn (24a)

Mpn = armpn x-Fn,
(24b)

2.5 Equations of particle motion

Once the forces exerted on each particle by surrounding particles have been
calculated, the equations of motion for each particle may be solved and time ad vanced
one step. The equations of motion are derived from a Taylor series expansion about
the current time (Walton 1980). The x component of velocity un+1/2 of particle i is

uit+1/2 = yn=1/2 4+ At Fyin/mass; . (25)

The position of particle i at time n+1 is then
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xin+1 =x"+ At uin+1 /2. ' (26)

These expressions are second-order accurate with velocity-dependent forces. Similar
equations are used for the y component of velocity v, the y position, the angular
velocity wand the orientation 6. Again, for stability, the time step At is a small fraction
(typically 1/10) of the reciprocal of the frequency of free oscillation (1/2n)(kne/m1/2,
where 11 is the mass of the smallest particle.

It is efficient to calculate and store the positions of the particle vertices. The x and
y components of the vector from the center of mass of particle i to vertex j are

1) = r(i,j) cos[On() + ali )] - @7a)
rynGi) = (i) sin[6G) + i )] . o (27b)

2.6 Calculating the energetics of a system

The work performed on a system during the course of a numerical experiment is
balanced by changes in the potential energy, the kinetic energy and the energy stored
inelastic deformation, and by energy dissipation. The dissipative mechanisms consist
of frictional contacts between sliding blocks and inelastizity and crushing at the point
of contact, modeled by the viscous—plastic parts of the normal contact force model.

The rate of work performed on a system is the sum of the dot products of the forces
on, and the velocity of, each boundary particle in the system. In general, either the
force or the velocity of the boundary particles may be specified.

Therate of change in the potential energy of a system is the sum of the dot products
of the body forces on, and the velocity of, each part.cle in the system. An expression
for the change in the potential energy of a system in which the body forces are gravity

and buoyancy is
APE=gAtY, 3 (wipiAi-w,lpwAil). (28)
n '

The two summations in eq 28 are over each particle (i) at each time step (n). Aj is the
area and w; is the vertical component of the velocity of particlei. Ajs is the submerged
area and wjs is the vertical component of the velocity of the centroid of the submerged
area of particle i. pj is the particle density and pw 5 the water density.

The frictional dissipation ®f is the sum of the work performed by the tangential
force at each point of contact among the particles in the system

¢f=AtE Z(F't)in(vh/nOt)in. 7 7 o ’ 29
noj

The two summations in eq 29 are over all of the pairs of particles in contact (/) at each
time step (n). The relative velocity is given by eq 11 and the tangential force
component is given by eq 22. Similarly, the inelastic dissipation ®;, attributable to
viscous damping and plastic deformation, is the sum of the net work performed by
the normal force at each point of contaci among the particles in the system

®; =At zn z (F 'n)in(vh/n' n)i". (30)

Again the two summations in eq 30 are over all of the pairs of particles in contact at
each timestep. Therelative velocity is given by eq 11 and the normal force component
is given by eq 18 or 20. The inelastic dissipation includes energy remaining in elastic
deformativn at the end of an experiment. It may be calculated if desired using the
equation E = Z kne Areaej, where Arenej is the elastic area remaining at contact i.
The change in the kinetic energy of the system is found by calculating the
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translational and rotational kinetic energy of each particle at the beginning and end
of the experiment.

2.7 Simple breakage routine for slender blocks

Because of the tendency for polygonal blocks to form stable load-bearing struc-
tures by interlocking or stacking, some form of breakage mechanism may be neces-
sary for realism and for the relief of forces that would otherwise continue to grow
unchecked.

A simple breakage model suitable for slender, rigid blocks was used in simulated

‘ridge growth experiments (Hopkins et al. 1991) and in simulated shear box experi-

ments (Hopkins and Hibler 1991a). In these experiments, the ice blocks were quadri-
lateral with their long sides parallel as shown in Figure 8. Flexure in the x,y plane
caused the blocks to break. A typical block is shown in Figure 8 with the contact forces
imposed by neighboring blocks.

Atregularintervals during the simulation, thed’ Alembert force and torque caused
by the contact forces and body forces on each rigid block are calculated. The addition
of the moment of the calculated force and the calculated torque to the moment of the
other forces on the block reduces the calculation of the moment at a point in the block
toastatics problem. They component of acceleration, attributable to the contact forces
Fyi and the body forces Fp on the block, is :

ay=(Fb+Z Fyi)/mass. | ' (1)
1

The rotational acceleration about the z-axis is
a=(Mb+§: Fy, xi)/lp (32)

where J;, is the polar moment of inertia about the z-axis. A method for calculating the
polar moment of inertia of an arbitrary polygon is outlined in section 2.8. My, is the
moment of the body forces on the particle. In a uniform gravitational field, this term
would be zero, but if, for example, the block were partially submerged in water, it
would be necessary to integrate over the length of the block to find M.

The moment at point X in the block is

Mx=-3, minl(xi - X),01 Fy, +p j:L (- X(-oxapdx. G3)

1
The moment My is calculated at small intervals along the x-axis of the block. If the
moment at some point exceeds the flexural strength of the block, then the block is

bioken at that point. The piece containing the cente- of mass of the original block
retains the same index. A new index N + 1 is assigned to the other piece. The new

Fal v FA/
i =) X -
F21 x Fs \

Figure 8. Calculation of the moments in a block of ice rubble.
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Figure 9. Calculation of the mass and center
of mass of a convex polygon.

center of mass of each of the pieces is calculated along with the new radii and angles
to the vertices defining the shapes. The new inass and polar moment of inertia of each
block are calculated and both blocks are given ihe translational and rotational
velocities and angular position of the original block. Algorithms for determining the
mass, the center of mass and the polar moment of inertia of polygonal blocks will be
discussed in the next section of this work. In passing, it is noted that this approach
could be used to model shear failure as well.

2.8 Calcul~ting the mass, center of mass and polar
moment of inertia of a convex polygon

The mass and the Iccation of the center of mass of a convex polygon may be found -
by using the vectors from some arbitrary point in the interior of the polygon to each
vertex to divide the polygon into triangular sections as shown in Figure 9. The area
and centroid of each triangular section are then calculated individually. The area of
the triangle defined by the vectors rr(n) and rx(n + 1) is :

Arean =12 1l m(n) xm(n+1) | . | - (34)

The centroid of the tnangular area is located at

ren =173 () + 127 + )] (35)

with respect to the arbitrary interior pomt

The same convex polygon may be divided again into tnangular sectlons by
drawing lines from its center of mass to each vertex. The center is a vertex of each
triangular segment. The moment of inertia of the polygon about an axis perpendicular
to the polygon through its center is the sum of the moments of inertia of each triangle
about the same axis. Figure 10 shows a single triangular segment of the polygon. We
seek an expression for the moment of inertia of the triangle about an axis perpendicu-
lar to the triangle at vertex O.

A line through O perpendicular to the opposite side divides the triangle into two
right triangles A1 and A». The polar moment of inertia of a right triangle about its
center of mass is

] = (bh/36) (b2 + h2) (36)
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Figure 10. Triangular segment of a convex polygon.

where b and h are the lengths of the perpend:cular sides of the right tnangle The
moment about the point O by the parallel axis theorem is

Jo=]+ Ad2 @
where A =1/2bhis the area of the triangle and d is the distance from the center of mass

to the point O.
In Figure 10 the unit vector ss, defining the <. ection of the side opposite O, is given

by
ss=(m-m)/lm-ml. (38)

The lengths by, b2 and h are given in terms of ss as

bi=lssem ! (39a)
b=lssem| (39b)
h=lssxml=1ssaxm|. (39¢)

The moment of A; about its center of mass, determined using eq 36 and 39a,c, is
Jy =1/36 bih (12 + h2) . (40)
The area of A1 is 1/2 b1h and the distance from the center of mass to point O is
di=1/3 (b2 + 4hOV2, | (1)

Substituting eq 39a,c, 40 and 41 into eq 37, and rearranging terms, yields the polar
moment of inertia of triangle 1 about O

ho= 112 bih (12 + 3h2) , (42)
The expression for [0, the moment of inertia about O of triangle 2 in Figure 10, is
similar. The moment of inertia about O of the complete triangle is the sum of J1o and
J20. The polar moment of inertia of an arbitrary convex polygon 1s found by adding
the moments of inertia of each triangular segment about the centroid of the polygon.

2.9 Troubleshooting
Problems with the polygonal simulation fall into two general categories:

1. Dynamic instabilities in the interparticle force modeling.
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2. Problems in the search routine from unobserved contacts.

Dynamic instabilities are caused by a time step that is too large for the elastic
constant and viscous damping constant being used. The fundamental frequency in
the simulation is approximately the frequency of free ‘oscillation of the elastic
component of the normal force (eq 13).

In side on side contacts, the area is proportional to the depth of penetration, while
in point on side and point on point contacts, it is proportional to the square of the
depth. For simplicity, the linear case is assumed. The frequency of free oscillation of
an undamped linear oscillator is (1/2%)(kne/m)1/2. If the system is not overdamped,
a time step At, which is a small fraction (typically 1/10) of the reciprocal of the
frequency, calculated with m equal to the mass of the smallest polygon in the system
divided by the nominal maximum contact width, is a conservative starting point.

Unobserved contacts have several simple causes. Contacts may be missed if the
search neighborhood (see Fig. 17 about each particle is not large enough to contain the
centers of all possible neighbors. The solution is to increase the size of the neighbor-
hood by increasing the cell size in the grid overlying the flow domain.

Unobserved contacts may also stem from the strategy of not calling the SEARCH
subroutine at every time step. If the system is rapidly deforming, two polygons that
were separated by a distance greater than € during the previous search may moveinto
contact. Since the pair of polygonsis not in the list of neighboring pairs, the contact
will remain undetected until the next search is performed. By that time their area of
intersection may be large. When they are finally detected, the force between them will
be huge and the aftermath will resemble an explosion. The solution is to increase € or
decrease the interval between SEARCH calls.

The interval between SEARCH calls must be chosen with an eye to the amount of
deformation that the system is likely to undergo in the interval and the parametere,
the maximum distance between the pairs of particles placed in the list of near
neighbors. For example, if € is 0.01 m and the nominal relative velocity between
particles is 1 m/s, then the search routine must be called at least every 0.01 s. It is
suggested that the search routine be called at intervals of no more than 50 time steps.
The parameter € should be larger than product of the time interval between global
searches and the estimated maximum relative velocity between particles, including
rotation. It is inefficient to make € larger than necessary, as this will increase the
number of pairsin the near-neighbor list, all of which must be tested for contactateach
timestep. These guidelines are necessarily arbitrary. Experience is the only real guide.

3. ALGORITHM FOR MODELING GLUED JOINTS BETWEEN
DISCRETE POLYGONS

The dynamics of river jamming and sea ice ridging processes depend on the
" dynumics of rubble accumulation and floating plates of intact ice. The rubble
dynamics are well modeled by existing two-dimensional simulations of polygonal
blocks, such as the one described in section 2 of this work and by Walton (1580). In this
section, a dynamic simulation technique is developed, which is consistent with the
particle simulation and is suitable for two-dimensional modeling of a body, such as
an intact ice sheet, composed of discrete, rigid, convex polygonal elements.

The algorithm is developed for the general case of a two-dimensional material
composed of non-uniform, convex polygonal elements. This general algorithm has
been further developed for the case of equilateral triangular elements for the study of
fracture of granular materials by Potapov et al. (in prep.). The algorithm was used by
Hopkins (1991) to model a beam composed of uniform rectangular elements.

As the modeled material deforms, internal tensile, compressive and shear forces
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Figure 11. Specimen composed of discrete, convex polygonal blocks.

are created. A viscous-elastic force model is used, which is similar to the one
described in section 2.4.3. If the tensile or compressive stresses in a glued joint exceed
thestrength of the material, a crack is initiated in the joint. The crack propagates along
the joint at a finite speed, creating a discontinuity in the material.

3.1 Glued joint simulation
. Figure 11 shows a rectangular specimen composed of discrete, rigid polygonal
elements or blocks. The joints between adjacent blocks are capable of supporting both
tensile and compressive forces in the direction normal to the glued faces and shear
forces in the tangential direction. The properties of the glued joints are determined by
parameters defining the stiffness and damping characteristics of the material. Con-
ceptually, the glued joint simulation method differs from the discrete block simula-
tion method described in previous sections of this report in the modeling of tensile
forces and in the fixed spatial relationship between adjacent blocks.

The edges of adjoining blocks are assumed to be joined by viscous—elastic fibers.
As the blocks move relative to one another because of deformation of the specimen,
the fibers stretch or compress. A pair of blocks that have rotated relative to one
another is shown in Figure 12. The vectors 8; and & shown in the figure represent
fibers in tension and compression, respectively. The vectors are defined by the
position of a point on block 2 with respect to the adjacent point on block 1 in the
undeformed state. It is assumed that relative deformation measured by § is small
compared to the size of the blocks. The forces on each block are assumed to be equal
and opposite.

Alocal n,§ coordinate frame is shown in Figure 13, with its origin at the center of
the face of block 1. The length of the joint is L. The 7 direction is outwardly

8

\

-

52

Figure 12. Pair of adjacent blocks.
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Figure 13. Local coordinate frame.

perpendicular to the face of block 1 and the { direction is tangential Then and {
components of 8(£) will be denoted 8n(£) and 8¢(C). Each varies linearly between the

values at the ends of the joint.
The elastic normal stress in a fiber located at { on the glued face is

o(0) = kn e 84O | 43)

where ky e is the stiffness of the material in the ) direction. In a beam formed by joining
rectangularblocks of widthw, kne= Efw, where E is Young’s modulus. The total elastic
force in the n direction is found by integrating eq 43 along the length of the joint

2
Fne=kne | 82 dC. 44
-L 12 h
An integral part of the glued joint simulation is the capacity to model flexural
failure. Failure occurs if the stress (eq 43) in the fiber at either end of the joint exceeds
the compressive or tensile strength of the material. In this work compressive failure
is not considered.
In the glued joint simulation, the crack propagates at a constant specified velocity.
No forceis exerted across the cracked part of a joint failing in tension. Therefore, if the
joint is undergoing failure, the integration limits in eq 44 are reduced so that
integration is only carried out across the intact region.

&1 ,
Frne=kne L S0 dg (45)

where {1 and {> are +L/2 and -L/2, respectively, in the absence of a crack and one or
the other is set equal to the crack tip position in the presence of a crack.

The integrals in eq 45 and in subsequent equations are evaluated by expressing
3n(0) in terms of its slope and {-intercept using the values of 8y({) at {1 and {2 in Figure
13. Similarly, 5n(§ may be expressed in terms of the time derivative of the slope and
C-intercept using the previously calculated values of the slope and {-intercept. In the
cracked regions, the elastic force across a crack tip in tension drops immediately to
zero. However, the elastic force across the intact part of the joint continues. The stored
elastic force is released smoothly during fracture through eq 45. An elastic compres-
sive force that persists after complete fracture will be modeled without loss of
continuity by the equations for contact forces in section 2.4.3.
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A dissipative or viscous force is assumed to exist that is proportional to the rate of
deformation of the material. The dissipative force on block 1 in the n direction is

&1

Fav=knv ] Bn(§) d5 . (46)
E2

The dissipative force exists only across the unfractured part of the joint.

The elastic force Fne and the damping force Fy v exert moments about the midpoint
of the glued joint because of the linear variation of the forces along the joint. The
moment of the elastic force on block 1 about the midpoint is

&1
Me=—kve | G800 dC S @
&2

where the integral is evaluated as in eq 45. The moment of the damping force on block
1 about the midpoint is

&1

Mnv=—knv| LG50 dc. 48)
Shear forces are created on the glued joint by the displacement of block 2 with
respect to block 1 in the tangential ({) direction. In theory, the distribution of shear
forces on a joint is not uniform. In the present case, the blocks are assumed to be rigid
and, therefore, the shear force, which is constant over the face, should be interpreted
as theaverage of the true non-uniform shear force. The elastic component of the shear

force in the { direction in the unbroken part of the joint is

&1 -
Fre=ke | S0 dC. | (49)
&

The integral in eq 49 is evaluated by expréssing 8z(0) in terms of its slope and £-
intercept using the values of 8¢({) at {1 and {2 in Figure 13.
The dissipative component of the shear force in the { direction is

&1 |
|

Fgv=kyv L 5y dt. (50)

The integral in eq 50 is evaluated by expressing 8¢(Z) in terms of the time derivative
of the slope and {-intercept using the previously calculated values of the slope and -
intercept.

The component forces on block 1 in the local 1§ coordinate frame are added before
being converted to the global x,y coordinate frame

Fx1=nx(Fne+Fnv)-ny (Fge+ Fgv) ~ (51a)

Fy‘l=ny(Fne+an)+ﬂx(F§e+F§v)- (51b)

The forces on block 2 are equal and opposite.
The elastic and viscous forces in the n) and § directions exert moments about the
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block centers of mass, which depend on the vector from the block centers to the
midpoint of the face of the joint. These moments are added to the moments My ¢ (eq
47) and My v (eq 48) about the midpoint of the joint. The total moments on block 1 and
block 2 from all of the forces are

M1=(ro)IXF1+Mne+Mr|v ' (52a)
M; = [(ro)2 x F + My o + My ] ' (52b)

where (r5)1 and (r,)2 are the vectors from the centers of mass of blocks 1 and 2 to the
midpoint of the face of the joint. The internal forces and moments exerted on each
block by adjoining glued blocks are added to the forces exerted on the blocks by
contacts with surrounding unconnected blocks.

3.2 Glued joint energetics

Elastic energy stored in the glued joint and energy dissipated by viscous dampmg
are components in the energetics of the overall simulation. The energy pictureduring
fractureissomewhat complicated. Theelasticenergy stored in tensionina glued joint
undergoing fracture is lost. The elastic energy stored in compression may either be
unloaded during failure or unloaded after complete failure by the contact force
equations in section 2. 4 3.

The rate of elastic energy storage, in the normal direction, perpendicular to the
glued faces, is found by multiplying the integrand in eq 45 by 511( £), then component
of the rate of deformatiion of the fibers on the glued face

&1 1 -
Fne=kne| &n® bn@ a. | (53)
§2 |

The rate of elastic energy storage in the tangential direction in the unfractured region
is found by multiplying the integrand in eq 50 by 8¢(£), the { component of the rate
of deformation of the fibers on the glued face

O e=k e] 875 80 dt; | 54)

;
i

&

— =— = — Beam Simulation
Analytical Solution (offset)

Moment

Figure 14. Simulation of a floating beain compared to
analytical solutions.
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Similarly, the energy dissipation rates attributable to viscous damping in the normal
and the tangential directions in the unfractured region are

&
®nv=knv ] 8020 dg (55)
&
and
&1 _
opv=kgy[82Qd;. | (56)
&2 ,

3.3 Disc1ssion » , '

Previous efforts devoted to explicit modeling of sea ice (Parmerter and Coon 1972,
Hopkins et al. 1991) have made use of analytical solutions for an equilibrated beam
on an elastic foundation (Hetenyi 1946). Hopkirs (1991) applied the glued joint
approach to modeling a floating ice sheet. Figure 14, which is from that work, shows
a comparison between a floating bearr <imulated using the glued joint approach
described above and the analytical solution for a floating beam subjected to three
pointloadsof 1 kN, indicated by the arrows. The figure shows the static deflectionand
moment with the analytical solutions offset éor visibility.

A dynamic simulation of a cantilever bear was compared with the linear elastic
theory of Timoshenko (1955). The frequency ci vscillation of the simulated beam was
within 2% of the theoretical prediction.

Ultlmately, the glued joint beam simulation will be used to model an intact ice
cover inriver jamming and sea ice ridging experiments. Snapshots of aseaice ridging
simulation are shown in the Figure 20. The details of that simulation are described by
Hopkins and Hibler (1991b).

In principal, extension of the glued joint method to simulate two- and three-
dimensional arrays of elements should be straightforward. In two or three dimen-
sions, pressure on one pair of opposing faces of a block would cause a response on the
other pairs of opposing faces, which would be a function of Poisson’s ratio. A three-
dimensional simulation using cubicblocks would allow modeling of the deformation
in an ice sheet in conjunction with a three-dimensional particle simulation using
polyhedral blocks.

4. MODELING SEA ICE WITH THE POLYGONAL SIMULATION

4.1 Model shear box experiments

A series of numerical experiments with a simulated two-dimensional shearbox is
described by Hopkins and Hibler (1991a). The object of these experiments was to
examine the effects of load, friction and breakage on the shear strength of ice rubble.
The samples were prepared by loosely {illing the shear box shown in Figure 15 with
blocks having a length-to-thickness distribution characteristic of Baltic pressure
ridges. The lid was placed over the rubble, the load was applied, and the system was
allowed to come to rest.

In the experiments, the lower part of the shear box moved at a constant horizontal
speed with respect to the fixed upper part. The lid was free to move vertically to
balance theapplied load N and the forces exerted by the ice rubble on its lower surface.
The lid was not allowed io rotate or to move laterally. The experiments were run
without gravity to remove the uncertainty as ‘o the true load on the failure surface
caused by the overburden. The horizontal force S required to move the lower part of
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Figure 16. Typical time history of S/N and lid displacement.
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the shear box and the vertical dispiacement of the lid were recorded at constant
intervals during the experiments. The experimental and material parameters used
were: ‘

Box width 45m

Box depth 30 m (variable)

uShear 0.25m S-l

N 1.34,5.34, 21.36 kPa
Rubble block thickness 05m

kne 1.25 x 106, 5.0 x 106, 20.0 x 106 N m-2
knv ‘ 2 Cq mass(kns/ mass)0-5
Cd 09

kte ' 106 N m-1

u 0.1,05,1.0

Pice : 920 kg m-3

Ocr 350 kPa.

Figure 16 shows a typical time history of the shear-to-normal-force ratio $/N and
the lid displacement in the direct shear experiment. Graphs of S/N showed a steady
rise to an initial peak. The lid displacement ranged from a few centimeters forp =0.1
to a meter or more for t = 1.0. The large lid displacements were a result of changes in
the material porosity in the vicinity of the nominal failure surface and the presence of
voids created at the leading ends of the shear box. At high loads the lid displacement
was reduced by the effects of breakage. ;

Figure 17 shows the ratio of maximum shear force to applied load $/N versus
applied pressure for three values of the friction coefficient y1. The r~sults show that the
shear strength depends strongly on friction and load. The dependence of S/N on
friction was expected. The dependence on load is less obvious. The shear force S is the
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Figure 17. Shear to normal force S/N versus applied pressure.
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Figure 18. Simulation of a pressure ridge grown from a rubble-filled lead.

sum of many local forces on the nominal failure plane. Because of the enforced shear
along the failure plane, these local forces will increase until they are relieved by local
rearrangement or breakage. Breakage is a function of the magnitude of the local
forces, which depend primarily on the load and secondarily on friction and shape. If
breakage occurs, the rearrangement will be terminated and the local forces in the
rubble will not reach the level that they would have reached during rearrangement.
Therefore, breakage will increase with load and will manifest itself as a reduction in
the frictional component of the shear strength. To demonstrate the effect of breakage
onshearstrength, the experiments were repeated without breakage. The dependence

of 5/:¥ on the applied load was drastically reduced. \

4.2 Model of ridging in leads filled with ice rubble

Hopkins et al. (1991) describe a two-dimensional simulation of sea-ice ridges
formed from a floating layer of rubble compressed between converging multi-year
floes. The simulations began with two ice floes of equal thickness separated by alead
covered by a single thickness of rubble blocks. As the opposing floes converged, the
layer of rubble thickened as blocks were thrust over and under neighboring blocks.
As the layer of rubble thickened, the resisting force on the two thick floes increased.
The ice floes themselves were composed of a rectangular array of sq lare blocks. The
blocks making up each floe moved as a unit in the horizontal direction at a constant
velocity.

Figurz 18 shows a sequence of snapshots from a typical ridging simulation. The
scale is readjusted in each snapshot. The experimental and material parameters used
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Figure 19. Energetics of the simulated ridge growth shown in Figure 18.

in the experimeut were:

Initial lead width 100 m

Floe thickness 18m

Floe speed 0.25m -1
Number of blocks 450

Block thickness 0308 m
Average block length 11m

pi 920.0 kg m-3
Pw 1010.0 kg m-3
Ccr 350 kPa

kne 40x 106 N m~2
knv 62.4 x 103 N m"‘ S (Cd = 0.9)
kte 1.0x 106 N m-i
u 0.5.

Figure 19 illustrates the overall rate of work and its three components for the ridge
growth shown in Figure 18. The data points represent average values over a 25-
second interval. The rate of increase of potc niial energy is calculated from eq 28 and
the rates of frictional and inelastic dissipation are calculated from eq 29 and 30. The
overall rate of work is the product of the floe velccities and the resisting force on the
floes integrated over each 25-second interval of the experiment.

A series of experiments was conducted to establish *ne dependence of the energy
consumed in ridging on the velocity of the multi-year floes and on the roughness and
the inelasticity of the rubble blocks. The experiments show that the ice roughness,
characterized by the friction coefficient t, is the most significant factor in determinin g
the energetics of ridging.

While instances of ridges grown from rubble-filled leads probably do occur in the
central Arctic pack, this model seems better suited to areas of the pack in the vicinity
of land. A more likely model for ridge growth in the central pack is for a sheet of thin
ice covering a newly frozen lead to be driven against a muiti-year fioe by the
converging pack.
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Figure 20. Simulation of the ridging of a sheet of unbroken ice covering a lead.

4.3 Modeling ridging of a lead covered with a sheet of thin ice

Hopkins and Hibler (1991b) describe a two-dimensional simulation of ridges
formed from an unbroken sheet of newly frozen lead ice colliding with a thick multi-
year floe. Snapshots of .he simulated ridge growth are shown in Figure 20. Blocks
broken from the leading -dge of the thin ice sheet collectabove and beneath the multi-
year floe to form the characteristic ridge structure seen in the central Arctic. The
results of preliminary m"merical experiments using this modei indicate that the
amount of energy requured to ridge ice may be much larger than previous estimates.

The ridg'ng simulation begins with a thin plate of ice moving at a constant speed
toward a thick multi-year tloe. As the lead ice collides with the floe, it bends. The lead
ice is modeled as a plate on an elastic foundation, using standard solutions (Hetenyi
1946) for vertical and angular deflection and moment at regular points in the plate.
(Future experiments will use the beam simulation described in section 3.3). When the
moment at a point in the lead ice exceeds its flexural strength, it breaks at that point.
As the lead ice continues to move toward the floe, additional blocks break off and
contribute to the ridge structure. Occasionally, the blocks themselves fail in flexure.
The energy dissipated at every contact by friction and inelasticity and the changes in
potential energy of the rubble blocks and the thin ice plate are calculated using eq 28—
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Figure 21. Energetics of the simulated ridge growth shown in Figure 20.

30. The overall ridging work is the product of the velocity of the lead ice and the
resisting force on the lead ice integrated over each interval. The multi-year floe is
treated as a rigid plate. The experimental and material parameters used in the
simulation were:

Floe thickness 20m

Lead ice thickness 0.3m

Speed of lead ice 0.33ms-1

pi 920.0 kg m-3
Pw 1010.0 kg m-3
Gecr 300 kPa

kng 4 x 106 N m_z
knv 4 x 103 N (m/s)‘l
k(g 1x106 N m-2
pdry 0.40

1 wet 0.25

Young’s modulus 1.0 x 107 N m-2,

The rates of work, dissipation and increase of potential energy averaged over 50-
second intervals are shown in Figure 21. The overall rate of work increases in an
approximately linear fashion throughout the experiment, while the rate of increase of
potential energy remains relatively constant. The overall rate of work is largely a
function of the frictional force exerted on the underside of the lead ice. The frictional
force, which depends on the buoyancy of the rubble, is proportional to the area of the
rubble. Since the lead ice is fed into the ridge at a constant rate, the area of rubble
beneath the plate, the frictional force and the overall work will increase linearly with
time. The ratio of the overall rate of work to the rate of increase of potential energy in
Figure 21 varies between 10:1 and 20:1. In the ridges grown from a rubble-filled lead

33




discussed in section 4.2, the ratio was between 3:1 and 5:1, depending on the
coefficient of friction.

The force required to ridge ice largely determines the internal strength of the ice
pack in compression. In large-scale modeling of the ice covering the Arctic Basin,
using anice thickness distribution, itis convenient to parameterize total ridging work
in terms of the increase of potential energy from ridging. The restits of the ridging
simulation suggest that the value of ‘wo, which has been typically assumed, may
greatly underestimate the strength of the ice pack.

5. CONCLUSION

This work has outlined, in detail, the component mechanisms that together make
up a method for the simulation of two-dimensional systems of discrete, convex
polvgonal particles. The technique has been used to do numerical shearbox experi-
ments (section4.1) (Hopkins and Hibler 1991a), tosimulate pressureridging of alayer
of floating ice rubble (section 4.2) (Hopkins et al. 1991), and to simulate pressure
ridging of an intact layer of thin ice (section 4.3) (Hopkins and Hibler 1991b).

The present work owes a debt to the DIBS model (Walton 1980). In the spirit that
a student may only repay his teacher by becoming better, the present work contains
several improvements.

1. In the DIBS model, certain types of intersections between poly(ciss were
problematical and were handled as exceptions. The strategy of O'Rourke et al. (1982)
(section 2.4.1) used in the present work has removed these problems.

2. The present work uses an Elastic-Viscous-Plastic (EVP) contact force model
(section 2.4.3) based on the area of intersection of polygons in contact. Walton
outlined a simila: mnodel for the elastic force, but used velocity-dependent damping
in parallel. This damping method is unappealing in point on point and point on side
contacts because the damping force is a maximum when the area of intersection is a
minimum, namely, when the point first contacts the other pamcle The logical
counterpart to an elastic force proportional to the area of inte1 section is a viscous force
proportional to the rate of change of the area. However, this damping method does
not dissipate enough energy in point on point and point on side contacts to model
highly inelastic behavior. The essential ingredient in this scheme s the plastic limiton
the stress across the plane of contact, which qualitatively accounts for the initial
crushing that occurs in point on point and point on side contacts.

3. A failure criterion suitable for slender rigid blocks has been developed and
implemented (section 2.7).

4. A “glued” joint algorithm suitable for dynamic simulation of specimens com-
posed of discre .2 polygonal element- hasbeen developed. This approach is consistent
with the basic polygonal particle simulation. The strength of the glued joints depends
on the material properties o the modeled material. A viscous-elastic force model is
used to calculate the forces between adjacent blocks. If the stresses in the fibers at the
end of a joint exceed the tensile strength of the material, a crack is initiated, which
propagates across the joint at a constant speed. The algorithm permits two-dimen-
sional modeling of situations in which failure of an intact material leads to creation
of rubble, such as in Arctic ice ridging and river ice jamming.

5. The computer code itself has been written with clarity and relative simplicity. It
represen's a huge improvemen: over previous codes. This is not cosmetic. If a code
is to be a useful tool, it must be capable of being quickly shaped and adapted to
perform new tasks.
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APPENDIX A: A GENERAL TWO-DIMENSIONAL POLYGONAL PROGRAM

- The following program contains the general two-dimensional simulation tech-
nique described above. Although the program is written in Fortran 8x, it might be
. more accurately described as being written in a Pascal style. That is, all variables are
declared explicitly and all variables which are not local to a subroutine are global, or
common, to all subroutines. The common blocks of global variables and their
declarations are contained in the ‘include’ file blockcom.f.

List of program variables

Np:

Npr:
NpNpr:
Nvmax: .
dimi,dimj:
dimk:
dimij:
dimijk:

x,yth:
u,v,w:
Mass,Jpol:
ra:
rcosa,rsina:
>,y
length:

vecmidn,vecmidt:

home,near:

nnear:

grid:

ngrid:

invx,invy:

the maximum number of blocks.

the maximum number of neighbors per block.

the maximum number of pairs of blocks.

the maximum number of vertices per block.

the maximum number of grid cells in the x and y direc-
tions.

the maximum number of blocks per grid cell,

the maximum number of grid cells.

the maximum number of spaces in the 3-D grid array.

List of Program Variables:

1-D arrays, store position (x,y) and orientation (theta) of
each block at time n.

1-D arrays, store velocities of each block at time n-1/2
(w=rotational velocity).

1-D arrays, store mass and polar moment of inertia of
each block.

2-D arrays, store length and angle of vectors from center
to vertices.

2-D arrays, store r*sin(a) and r*cos(a) for vectors from
center to vertices.

2-D arrays, store x and y position of vertices with
respect tocenters.

2-D array, stores the length of each side of each

polygon.
2-D array, stores the normal and tangential components

of the vector from the polygon center to the midpoint

of each side of each polygon.

1-D arrays, store numbers of home and near polygons in
a pair of near neighbors.
1-D array, stores the number of near neighbors of each
polygon.
3.D array, corresponds to the grid overlaying the simula-
tion domain. Used to define the neighborhood surround-
ing the polygons. The third dimension stores the array
numbers of blocks whose centers lie in the given cell.
2-D array, stores the number of blocks whose centers lie
in each cell of the 2-D grid.

1.D arrays, stores the column and row locahon of the

polygons in the grid.
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ptli,ptilj:
Ftp:

vnormp, vtangp:

Areap,dAreap,ElAreap:

slopen,intern:
slopet,intert:

dslopen,dintern:

dslopet,dintert:

crackt,crackb:
vhl,vh2,vnl,vn2:
status:

F1,R2M:

F2b,Mb:

kne:
knv:

kte:

ktv:

mu:

rhoi,rhow:

csigmac:

gsigmat:

grav:

cell:

width,height:
work,idiss,fdiss,penrg:

epsilon:

dt:
time0,time,duration:
tit:

tout:

tpic:

N,Nbnd,Nt:

1-D arrays, used to initialize the current vertices in the
overlap subroutine.

1-D array, stores the frictional force between a pair of
polygons at time n-1.

1-D arrays, store the normal and tangential relative
velocities between a pair of polygons at time n-1.

1-D arrays, store the total area of overlap, the change in
the total area, and the area of elastic deformation of a
contact at time n-1.

1-D arrays, store information about the deformation of
each glued joint in the normal direction.

1-D arrays, store information about the deformation of
each glued joint in the tangential direction.

1-D arrays, store information about the rate of change of
the deformation of each glued joint in the normal direc-
tion.

1-D arrays, store information about the rate of change of

deformation of each glued joint in the tangential direc-

tion.

1.D arrays, stores the length of cracks from the top and
bottom ends of each glued joint.

1-D arrays, store vertices of the home and near polygons
bounding each glued joint. :

1-D arrays, stores the status of the joint between a pair of
blocks. That is, intact (glued) or broken.

1-D arrays, store the x and y components of force and
the torque on a polygon at time n.

1-D arrays, store force and torque on a polygon at time n

due to gravity and buoyancy.

contact stiffness per meter of contact width in the
normal direction.

contact viscosity per meter of contact width in the
normal direction.

contact stiffness in the tangential direction.

contact viscosity in the tangential direction.

contact friction coefficient in the tangential direction.

ice and water density.

compressive strength of the block material.

tensile strength of a glued joint.

acceleration of gravity.

edge dimension of each square grid cell.

width and height of the simulation domain.

store total work on system, inelastic dissipation, frictional
dissipation, and change of potential energy.

maximum separation between close contacts.

simulation time step.

initial time, current time, and experiment duration.

time interval between calls to bouyancy subroutine.

time interval between calls to output subroutine.

time interval between calls to graphics subroutine.
number of boundary and non-boundary polygons and
total number of polygons.
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nsearch:’ interval between calls to global search subroutine
o (number of time steps).
A\ cfile0: name of the initial and final configuration and the
\_f.. output, _
cfile: 1-D array, stores names of the configuration files
dumped at intervals for restart.
rfile: 1-D array, stores names of the result files dumped at
intervals. :
Program listing
program A_Block

C Two-dimensional, Irregular polygonal blocks
C Glued-joint contacts and collisional contacts
C Elastic-viscous-piastic contact force model

include ‘blockcom.f
external initvars

Call Initial

Do While (time-time0 .1t. duration)

if (tpict .ge. tpic) Call Picture

C skip the search block for nsearch time steps

if (scount .ge. nsearch) then
Call Gridfill
Call Search

scount = 0
end if

if (tfltt .ge. tflt) Call Float

Call Force
Call MoveBlocks

if (toutt .ge. tout) Call Output

scount = scount+1

! End Do
r
End

C

C Blockcom.f contains all common blocks and Global declarations.
C This version is for the new glued joint simulation.

Implicit None
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Integer*4 Np,Npr,NpNpr,Nvmax,dimi,dimj,dimk,dimij,dimijk
Parameter (Np=600, Npr=10, NpNpr=6000, Nvmax=10, dimi=200,
& dimj=30, dimk=15, dimij=6000, dimijk=90000)

C Grid and inverse address variables:

Common /GridVar1/ grid(dimi,dimj,dimk),ngrid(dimi,dimj),
& invx(Np),invy(Np)

Integer*2 grid,ngrid,invx,invy

C Particle configuration and shape variables:
Common /BlocVar1/ x(Np),y(Np),th(Np)
Common /BlocVar2/ u(Np),v(Np),w(Np)

Common /BlocVar3/ mass(Np),Jpol(Np),Asub(Np)
Common /BlocVar4/ r(Np,Nvmax),a(Np,Nvmax),rcosa(Np,Nvmax),

& rsina(Np,Nvmax),rx(Np,Nvmax),ry(Np,Nvmax),
Common /BlocVar5/ length(Np,Nvmax),vecmidn(Np,Nvmax),
& vecmidt(Np,Nvmax)
Common /BlocVaré/ Nv(Np)
Real*8 x,y,th
Real*8 u,v,w
Real*8 Mass,Jpol,Asub

Real*8 r,a,rcosa,rsina,rx,ry ‘
Real*8 length,vecmidn,vecmidt
Integer*2 Nv

C Pair definition variables:

Common /PairVar1/ near(NpNpr),nnear(Np)
Common /PairVar2/ status(NpNpr)

Integer*2 near,nnear
Character*1 status

C Glued contact variables:

Common /GlueVar1/ vh1(NpNpr),vh2(NpNpr),vn1(NpNpr),vn2(NpNpr)
Common /GlueVar2/ slopen(NpNpr),dslopen(NpNpr),slopet(NpNpr),
& dslopet(NpNpr),intern(NpNpr),dintern(NpNpr),
& intert(NpNpr),dintert(NpNpr)
Common /GlueVar3/ crackt(NpNpr),crackbNpNpr)

Integer*2 vhl,vh2,vni,vn2
Real*8 siopen,dslopen,slopet,dslopet,intern,dintern,intert,dintert

Real*8 crackt,crackb
C Collisional or non-glued contact variables:
Common /CollVarl/ pt1i{NpNpr),pt1j(NpNpr)

Common /CollVar2/ Ftp(NpNpr),vnormp(NpNpr),vtangp(NpNpr),
& Areap(NpNpr),dAreap(NpNpr),ElAreap(NpNpr)

Integer*2 ptli,ptij
Real*8 Ftp,vnormp,vtangp,Areap,d Areap,ElAreap




C Material parameters:

Common /MatVar1/ kne,kte,knv,ktv,mu
Common /MatVar2/ csigmac,gsigmat,vcrack
Common /MatVar3/ rhoi,rhow,tlead,edge

Real*8 kne,kte knv,ktv,mu
Real*8 csigmac,gsigmat,verack
Real*8 rhoi,rhow,tlead,edge

C Program variables:

Common /ForceVar/ F1(Np),F2(Np),M(Np),F2b(Np),Mb(Np)
Common /ParamVar/ pi,nul,epsilon,cell,height,width,grav,

& waterlevel
Common /RsultVar/ work,wwork,idiss,fdiss,penrg KEini
Common /TimerVar/ dt,time0,time,duration,tpict,tpic,toutt,tout,

& tfltt, tflt
Common /CountVar/ N,Nbnd,Nt,nsearch,scount,count,fcount,nfiles
Common /Filevar/ cfile0,cfile(30),rfile(30)

Real*8 F1,F2,M,F2b,Mb

Real*8 pi,nul,epsilon,cell, height,width,grav,waterlevel
Real*8 work,wwork,idiss,fdiss,penrg, KEini

Real"8 dt,time0,ime,duration, tpict, tpic,toutt,tout, tfltt,tflt
Integer*2 N,Nbnd,Nt,nsearch,scount,count,fcount,nfiles
Character*12 cfileO,cfile,rfile

Subroutine CollForce(ind,nh,nn,nx,ny,Area,xcen,ycen,base,
& F1h,F2h,MhMn,ndiss,tdiss)

C The CollForce subroutine calculates the interparticle furce.

C A general contact force algorithm is used. Firs, all points on one

C polygon interior to the other are found. Second, The points of
C intersection are found. Third, the area of overlap and centroid are

C calculated.

C The force has normal and tangential components. The normal force
C has an elastic component proportional to the area of overlap

C and a viscous component proportional to the rate of change of

C the area of overlap. The magnitude of the normal force is not

C allowed to exceed a limit value equal to the product of the

C compressive strength of the material and the breadth of the

C contact surface. The tangential force is incrementally increasing.

C The-increments are proportional to the tangential velocity at the

C point of contact. The tangential force must be less than mu times

C the normal force. See section 2.4.3 of the report.

C the total area of deformation is stored in Arean(i)
C the area of elastic deformation is stored in ElAreap(i)

include ‘blockcom.f’
Integer*2 ind,nh,nn k

Real*8 nx,ny,Area,xcen,ycen,base
Real"8 F1h,F2h,Mh,Mn,ndiss,tdiss
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Real*8 Fn,Fne Fnv,Ft,Fpl,vnorm,vtang
Real*8 armhx,armhy,armnx,armny,dx,dy,du,dv
Real*8 dArea,ElArea,dArean,dAreanmh

dArea = Area-Aieap(ind)
Areap(ind) = Area

If (Area .gt. 0.0 .and. ElAreap(ind)+dArea .gt. 0.0) then
C Moment armh of the area of overlap about the polygon centers of mass:

armhx = xcen-x(nh)
armhy = ycen-y(nh)
armnx = xcen-x(nn)
armny = ycen-y(nn)
C Relative velocity at centroid of overlap area:

du = u(nh)-u(nn)-armhy*w(nh)+armny*w(nn) |
dv = v(nh)-v(nn)+armhx*w(nh)-armnx*w(nn)

C Relative velocity at time n-1/2:

viorm = nx*du+ny*dv
vtang = nx*dv-ny*du

C The normal component of force
dAreanmh = dArea/dt
if (dAreap(ind) .ne. 0.0) then

dArean = 1.5"dAreanmh-0.5*d Areap(ind)
else

dArean = 0.0
end if
C The elastic component of the normal force
Fne = kne*(ElAreap(ind)+dArea)
C The viscous component of the normal force
Fnv = knv*dArean
CThe }:{lastic limit on the normal force
Fpl = csigmac*base
C The tatal normal force (must be > zero)
'n = max(nul,Fne+Fnv)
if (Fn .1t. Fpl) then
ElArea = ElAreap(ind)+dArea
else

Fn = Fpl

C This is a solution of equation (51). The solution must be
C used with care if knv is relatively small.
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if (knv.gt.0.0)

then ElArea = (Fpl+(0.5*%knv /dt)*

& (3.0°ElAreap(ind)+dt*d Areap(ind)))/ (kne+1.5%knv /dt)
else '
ElArea = ElAreap(ind)
end if
end if

C The tangential frictional force (coulomb limit = mu*Fn)

Ft = Ftp(ind)-kte*dt*vtang
Ft = sign(min(abs(Ft),mu*Fn),Ft)

CThe x and y components of the force on the HOME polygon

F1h = nx*Fn-ny*Ft
F2h = ny*Fn+nx*Ft

C The moments of the forces on the HOME and NEAR polygons

Mh = armhx*F2h-armhy*F1h
Mn = armny*F1h-armnx*F2h

C Inelastic energy dissipation

if (vnormp(ind) .ne. 0.0) then

ndiss = -Fn*(1.5*vnorm-0.5*vnormp(ind))
else

ndiss = -Fn*vnorm
end if

C Frictional energy dissipation

if (vtangp(ind) .ne. 0.0) then

tdiss = -Ft*(1.5*vtang-0.5*vtangp(ind))
else ‘

tdiss = -Ft*vtang
end if '

C Save necessary variables for the next time step

Ftp(ind) = Ft
vnormp(ind) = vnorm
vtangp(ind) = vtang
if (ElAreap(ind) .gt. £.0) -
& dAreap(ind) = (ElArea-ElAreap(ind))/dt
ElAreap(ind) = ElArea

Else
Flh = 0.0
F2h = 0.0
Mh=0.0
Mn=00
tdiss = 0.0}
ndiss = 4.0

Ftp(ind) = 0.0

vnormp(ind) = 0.0
vtangp(ind) = 0.0
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dAreag(ind) = 0.0
ElAreap(ind) = 0.0
d If

End

Subroutine Contact(nh,nn,neighbor)
C A brute force routine to find the shortest distance between two
C polygons. The routine quits when it finds a distance less than
Cepsilon. Itis used to reduce the number of pairs in the list
C of near neighbors.

include ‘blockcom.f’

Real*8 dx,dy,maxsep,xprod,ssx(Nvmax),ssy(Nvmax)

Integer*2 j,jp,nh,nn,pt

Logical neighbor
C Make side vectors - NEAR block:

Do j = 1,Nv(nn)

jp = 1+mod(j,Nv(nn))

- ssx(j) = (x(nn,jp)-rx(nnj)) /length(nn,j)
ssy(i) = (ry(nn,jp)-ry(nn,j))/length(nn,j)

End Do

C Find vertex of HOME block closest to NEAR block:
pt=1
Do While (.not. neighbor .and. pt .le. Nv(nh))

dx = x{(nh)-x(nn)+rx(nh,pt)
dy = y(nh)-y(nn)+ry(nh,pt)

maxsep = 1000.0
Doj = 1,Nv(nn)
xprod = ssx(j)*(dy-ry(nnj))-ssy()*(dx-n(nn,))
if (xprod .It. maxsep) maxsep = xprod
End Do
if (maxsep .ge. -epsilon) neighbor = .true.
pt = pt+1
End Do
If (.not. neighbor) then
C Make side vectors - HOME block:




VAR -

Do j = 1,Nv(nh)
jp = 1+mod(j,Nv(nh)).

ssx(j) = (x(nh,jp)-rx(nh,})) /length(nh,j)
ssy(j) = (ry(nh,jp)-ry(nh,j))/length(nh,))

End Do
C Find vertex of NEAR block closest to HOME block:
pt=1
Do While (.nct. neighbor and pt.le. Nv(nn))

dx = x(nn)-x(nh)+rx(nn,pt)
dy = y(nn)-y (nh)+ry(nn,pt)

Doj = 1,Nv(nh)
xprod = ssx(j)*(dy-ry(nhj))-ssy()*(dx-rx(nh,j))
if (xprod .It. maxsep) maxsep = xprod
End Do
if (maxsep .ge. -epsilon) neighbor = .true.
pt=pt+1
End Do
End If
End

Subroutine Float
C This subroutine calculates the buoyant force on each block.

C The submerged area is the area of overlap with the water polygon.
C The water polygon is defined in the initial subroutine.

include ‘blockcom.f’

Integer*2 i j,ind
Real*8 nx,ny,area,xcen,ycen,base

j=Np
ind = NpNpr

Do i = Nbnd+1,Nt
Call Overlap(ind,j,i,;nx,ny,area,xcen,ycen,base)
if (area .eq. 0.0 .and. y(i) .It. waterlevel) then
area = mass(i)/rhoi

xcen = x(i)
end if
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L. F2b(i) = grav*(mass(i)-rhow*area)
* Mb(i) = -grav*rhow*area*{xcen-x(i))

End Do
tfitt = 0.0

End

! * Subroutine Force

C The Force subroutine calls the collisional contact or the glued
C contact force subroutine depending on the status of the joint.

include blockcom.f
Keal*8 F1h,F2h,Mh,Mn,ndiss,tdiss
Real*8 nx,ny,area,xcen,ycen,base

Integer*2 ind,j,nh,nn
Do nh = Nbnd+1,Nt
\ ind = Npr*(nh-1)
B, " Doj=1,nnear(nh)
S ind = ind+1
g nn = near(ind)
o If (status(ind) .eq. ‘i) then
Subroutine GlueForce(ind,nh,nh,F 1h,FZh,Mh,Mn,ndiss,tdiss)

Else

! Subroutine Overlap(ind,nh,nn,nx,ny,area,xcen,ycen,base)

‘/ Subroutine CollForce(ind,nh,nn,nx,ny,area,xcen,ycen,base,
T & F1h,F2h,Mh,Mn,ndiss,tdiss)

End If
C Add forces for each contact to find the resultant force on each polygon.

Fi(nh) = F1(nh)+F1h
F2(nh) = F2(nh)+F2h
M(nh) = M(nh)}+Mh

F1(nn) = F1(nn)-F1h
F2(nn) = ¥2(nn)-F2h
M(nn) = M{nn)+Mn

s idiss = idiss+ndiss
fdiss = fdiss+tdiss

End Do




Subroutine GlueForce(i,nh,nn,F1h,F2h,Mh,Mn,ndiss, tdiss)
include ‘blockcom.f’

Real*8 x1,x2,x3,x4,y1,y2,y3,y4,deltax1,deltayl,deltax2,deltay2
Real*8 slopenn,dslopenn,dslopennmh,slopetn,dslopetn,dslopetnmh
Real*8 internn,dinternn,dinternnmbh,intertn,dintertn,dintertnmh
Real*8 Fn,Fne,Fnv,Fte Ft,Ftv,Ftmh, MFne MFnv MFt

Real*8 dx,dy,dxn,dyn,dify1,dify2,dify3,sigl,sig2,half tlength
Integer*2 i,nn,nh

tlength = lengith(nh,vh2(i))
half = 0.5*tlength

C vhi and vh2 are the numbers of the vertices on block nh.
Cvnland yn2 are the numbers of the vertices on block nn.

C Find the coordinates of the top and bottom pairs of vertices in space:

x1 = x(nh)+rx(nh,vh1(i))
y1 = y(nh)+ry(nh,vhi(i))
x2 = x(nh)+rx(nh,vh2(i))
y2 = y(nh)+ry(nh,vh2(i))

x3 = x(nn)+rx(nn,vni(i))
y3 = y(nn)+ry(nn,vni(i))
x4 = x(nn)+rx(nn,vn2(i))
y4 = y(nn)+ry(nn,vn2(i))

C A local x,y coordinate frame is used in the subroutine which
C corresponds to the 1, notation used in section 3.1.

C The normal (x) direction is perpendicular to the face of the
Cblocks and the tangential (y) direction is tangent to the

C face of the blocks. The overall flow coordinate frame is also

C designated x,y. The components of the tangent unit vector in .
C the flow frame are dx,dy. The components of the normal unit
C vector in the flow frame are then dy,-dx.

dx = (x1-x2)/tlength
dy = (y1-y2)/tlength

C The array variable crackb stores the length of a crack which was
C initiated at the negative end of the joint. Similarly, the array

C variable crackt stores the length of a crack which was initiated
C at the positive end of the joint.

C If there is a crack at the negative end, recalculate the positions
C of the points on blocks nh and nn at the crack tip:

if (crackb(i) .gt. 0.0) then

dxn = (x3-x4) /tlength
dyn = (y3-y4)/tlength
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x2 = x2+crackb(i)*dx
y2 = y2+crackb(i)*dy

x4 = x4+crackb(i)*dxn
y4 = yd+crackb(i)*dyn
end if ‘

C If there is a crack at the positive end, recalculate the positions
C of the points on blocks nh and nn at the crack tip:

if (crackt(i) .gt. 0.0) then
dxn = (x3-x4)/tlength
dyn = (y3-y4)/tlength

x1 = x1-cracka(i)*dx
y1 = yl-crackt(i)*dy

x3 = x3-crackt(i)*dxn
y3 = y3-crackt(i)*dyn
end if

C Calculate the fiber deformation at positive end (1) and the
C negative (2) end (or at crack tips):

deltax1 = (x3-x1)*dy-(y3-y1)*dx
deltayl = (x3-x1)*dx+(y3-y1)*dy
deltax2 = (x4-x2)*dy-(y4-y2j*dx
deltay2 = (x4-x2)*dx+(y4-y2)*dy

C Calculate the y position and the stress in the fibers at
C the positive and negative ends:

y1 = half-crackt(i)
y2 = -half+crackb(i)

sigl = kne*deltax1
sig2 = kne*deltax2

C Tensile fracture at the positive end of joint
C (tensile stress is positive):

if (sig1 .ge. gsigmat) crackt(i) = crackt(i)+dt*verack
C Tensile fracture at the negative end of joint:

if (sig2 .ge. gsigmat) crackb(i) = crackb(i)+dt*vcrack
C Use difference variables for efficiency:

difyl yl-y2
dify2 {yl’yl-y2*y2)/2.0
dify3 (y1**3-y2*%3)/3.0

C Calculate the slope of deltax and the time derivative
C of the slope at time n:

slopenn = (deltax1-deltax2)/dify1
if (slopen(i) .ne. 0.0) then
dslopennmbh = (slopenn-slopen(i)) /dt
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else
dslopennmh = 0.0
end if

dsiopenn = 1.5*dslopennmh-.5*dslopen(i) '

C Calculate the intercept of deltax and the time derivative
C of the intercept at time n:

internn = (y1*deltax2-y2*deltax1)/dify1
if (intern(i) .ne. 0.0) then

dinternnmh = (internn-intern(i))/dt
else

dinternnmh = 0.0
end if

dinternn = 1.5*dinternnmh-0.5*dintern(i)
C Elastic component of the normal force and its moment at time n:

Fne = kne*(slopenn*dify2+internn*dify1)
MFne = -kne*(slopenn*dify3+internn*dify2)

C Viscous component of the normal force and its moment at time n:

Fnv = knv*(dslopenn*dify2+dinternn*dify1).
MFnv = -knv*(dslopenn*dify3+dinternn*dify2)

C Slope of deltay and the time derivative of the slope at time n:
slopetn = (deltay1-deltay2)/difyl
if (slopet(i) .ne. 0.0) then
dslopetnmh = (slopetn-slopet(i)) /dt
else
dslopetnmh = 0.0
end if

dslopetn = 1.5*dslopetnmh-0.5*dslopet(nh)

C Intercept of deltay and the time derivative of the intercept at time n:

intertn = (y1*deltay2-y2*deltay1)/difyl -

if (intert(i) .ne. 0.0) then

dintertnmh = (intertn-intert(i)) /dt
else

dintertnmh = 0.0
end if

dintertn = 1.5*dintertnmh-0.5*dintert(nh)

C Calculate the elastic and viscous components of the tarigential force:

Fte = kte*(slopetr*dify2+intertn*dify1)
Ftv = ktv*(dslopetn*dify2+dintertn*dify1)

C Force components on block nh and moments on both blocks:
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F1h = dy*(Fre+Fnv)+dx*(Fte+Fiy)
F2h = -dx*(Fne+Fnv)+dy*(Fle+Ftv)

Mh = MFne+MFnv+veemidn(nh, vh2(i))*(Fte+Fty).

& vecmidt(nh,vh2(i))*(Fne+Fnv)
Mn = -MFne-MFnv +vecmidn(nn,vn1(i))*(Fte+ Ftv)-
& vecmidi{nn,vn1(i))*(Fne+Fnv)

C Store the slopes, intercepts, and derivatives:

slopen(i) = slopenn
dslopen(i) = dslopennmh
intern(i) = internn
dintern(i) = dinternnmh
slopet(i) = slopetn
dslopet(i) = dslopetnmh
intert(i) = intertn
dintert(i) = dintertnmh

C Cracks grow at a constant velocity:

if (cracks(i) .gt. 0.0) crackt(i) = crackt{)+dt*verack
if (crackb(i) .gt. 0.0) crackb(i) = crackb(i)+dt*vcrack

" C If the crack crosses the joint, break the joint:
If (crackt(i) + crackb(i) .gt. 0.9*tlength) then

Call Overlap(i,nh,nn,nx,ny,Area,xcen,ycen,base)
status(i) = ‘b’
Ftp@i)= 0.0
vnormp(i) = 0.0
vtangp(i) = 0.0
Areap(i) = Area
dAreap(i) = 0.0
ElAreap(i) = 0.0

End If
End

Subroutine Gridfill
C See Section 2.3,
include ‘blockcom.f
Integer*2 i,,g1,8
C Set the number in each GRID cell to zero:
Doi = 1,dimi
Do = 1,dimj
ngrid(i,j) = 0

End Do
End Do




C Sort each polygon by grid location:
C Fill the inverse addresses invx and invy:

Doi= I,Nt
gi = 1+int(x(i)/cell)
g = 1+int(y(i)/cell)

ngrid(gi,gj) = ngrid(gi,gj)+1

grid(gi.gj,ngrid(gi,gj)) = i
invx(i) = gi
invy(i) = gj

End do

End

Subroutine Initial

C Reads in the system parameters and configuration.
include ‘blockcom.f
Integer*2i,j,jp.k,nh,nn
Real8 sino,coso,dx,dy
Character*1 tstatus

C input Parameters (from standard input):

C cfile0 is the initial configuration file ‘
C cfile(i) is the configuration file dumped following interval i

C rfile(i) is the parameter and result file dumped following interval i

C duration of the simulation

C tpic is the time between calls to the PICTURE subroutine

C tfit is the time between calls to the bouyancy subroutine

C nsearch is the number of time steps between calls to SEARCH
C epsilon is the maximum distance between point/side contacts

Read (*,*) cfile0
Read (*,") nfiles

Doi = 1,nfiles
Read (*,*) cfile(i), rfile(i)
End Do :

Read (*,*) duration
Read (*,*) tout
Read (*,*) tpic
Read (%) tflt

Read (*,*) nsearch
Read (*,*) epsilon

C Read in the system configuration
Open(l, File=cfile0, Form='Formatted’, Status="0Old")
read (1,*) Nbnd,N

read (1,*) time0,dt,cell,mu
read (1,*) kne knv,kte, ktv
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read (1,*) gsigmat,csigmac
read (1,*) height,width, waterlevel
read (1,*) work,penrg.idiss, fdiss keini

work = work/dt
penrg = penrg/dt
idiss = idiss/dt
fdiss = fdiss/dt

Nt = Nbnd+N

Doi= 1Nt
read (1,*) x(i),y(i),th(i), mass(i)
read (1,*) u(i),v(i),w(i).J pol(i)

sino = sin(th(i))
coso = cos(th(i))

read (1,*) Nv(i)

Doj = 1,Nv(i)
read (1,*) r(i,j).a(i,j)

rsina(i,j) = r(i,j)*sin(a(i,j))

reosa(i,j) = r(i,j)*cos(a(i,j)) .

C calculate the position of each vertex wrt the center of mass

rx(i,j) = coso*rcosa(i,j)-sino*rsina(i,j)’
ry(i,j) = sino*rcosa(i,j)+coso*rsina(i,j)
End Do

Do j = 1,Nv(i)
jp = 1+mod(j,Nv(i))

dx = rx(i,jp)-rx(i,j)
dy = ry(i,jp)-ry(i;j)

length(i,j) = sqrt(dx**2+dy**2)

dx = dx/length(i,j)
dy = dy/length(i,j)

|
|
|
i
i
|
1
|
!
|

C vector from center to the midpoint of each side .
C (normal and tangential components): .

vecmidn(i,j) = 0.5*(dy*(rx(i,jp)+x(i,j))-
- dx*ry(jp)+ry(i))

veemidt(i,j) = 0.5*(dx*(rx(i,jp)+rx(i,j))+
dy*(ry(ijp)+ry(i}))

End Do
KEini = KEini+0.5*(mass(i)*(u(i)**2+v(i)**2)+jpol(i)*w(i)**2)
End do

C Read the collisional and glued joint contact parameters:
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read(1,*) count
Doi = 1,count

read(1,*) nh,nn,tstatus

nnear(nh) = nnear(nh)+1
k = Npr*(nh-1)+nnear(nh)
near(k) = nn

status(k) = tstatus

If (status(k) .eq. i’) then
C Read the glued joint contact parameters:

read (1,”) vhi(k),vh2(k),vn1(k),vn2(k)

read (1,*) slopen(k),dslopen(k),slopet(k),dslopet(k)
read (1,*) intern(k),dintern(k),intert(k),dintert(k)
read (1,%) crackt(k),crackb(k) '

Else

C Read the collisional contact parameters:

. read(1,*) Ftp(k),vnormp(k),vtangp(k)
{ read(1,*) Areap(k),dAreap(k),ElAreap(k)

. EndIf
End Do

Ciose(l)
C Define; block Np as the water polygon:
Nv(Np) = 4

x(Np) = 0.5*width
y(Np) = 0.5*waterlevel

rx(Np,1) = 0.5*width
ry(Np,1) = 0.5*waterlevel
rx{Np,2) = -0.5*width
ry(Np,2) = 0.5*waterlevel
x(Np,3) = -0.5*width
ry(Np,3) = -0.5*waterlevel
rx(Np,4) = 0.5*width
ry(Np,4) = -0.5*waterlevel

time = time0
tfltt = tflt
scount = nsearch

End

Block Data InitVars
C Initializes the necessary variables

include ‘blockcom.f’
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Data grid,ngrid,count,fcount/dimijk*0,dimij*0,0,1/

Data near,nnear/NpNpr*0,Np*0/

Data pt1i,pt1j/NpNpr*1,NpNpr*1/

Data Ftp,vnormp,vtangp /NpNpr*0.0, NpNpr*0.0,NpNpr*0.0/
Data Areap,dAreap,ElAreap /NpNpr*0.0,NpNpr0.0,NpNpr*0.0/
Data slopen,slopet,intern,intert/NpNpr*0.0,NpNpr*0.0,

& NpNpr*0.0,NpNpr*0.0/
Data dslopen,dslopet,dintern,dintert/NpNpr*0.0, Nprr'O 0,
NpNpr*0.0,NpNpr*0.0/

Data crackt,crackb/NpNpr*0.0,NpNpr*0.0/

Data grav,nul,pi,rhow,rhoi/-9.81,0.0,3.14159265359,1010. 0 920.0/
Data toutt,tpict/2*0.0/

Data F1,F2,M/Np*0.0,Np*0.0,Np*0.0/

Data F2b,Mb/Np*0.0,Np*0.0/

End

Subroutine MoveBlocks

C This subroutine contains the equations of motion for the
Cblocks in finite difference form.

include ‘blockcom.f”

Integer*2i,j
Real*8 coso,sino

C Move boundary blocks:

Doi=1,Nbnd
x(i) = x(i)+dt*u(i)
End Do

C Move active blocks:

Doi = Nbnd+1,Nt
u(i) = u(i)+dt*F1(i)/mass(i)
x(1) = x(i)+dt*u(i)

v(i) = v(i)+dt*(F2(i)+F2b(i)) /mass(i)
y(i) = y(i)+dt*v(i)

w(i) = w(i)+dt*(M(i)+Mb(i)) /jpol(i)
th(i) = th(i)}+dt*w(i)

C Find the positions of the vertices relative to the center of mass:

sino = sin(th(i})
coso = cos(th(i))

Doj = 1,Nv(j)
rx(i,j) = coso*reosa(ij)-sino*rsina(i,j)
1y(i,j) = sino*reosa(i,j)+coso*rsina(i,j)
End Do




F1(i) = 0.0

F2(i) = 0.0

M(i) =00
End Do

C Work performed by ice floes:

Doi = 1,Nbnd
work = work+u(i)*F1(i)
F1(i) = 0.0

End Do

C Change in potential energy:

- Doi=Nbnd+1,Nt
penrg = penrg-F2b(i)*v(i)-Mb(i)*w(i)
End Do

time = time+dt
tfltt = tfltt+dt

toutt = toutt+dt
tpict = tpict+dt

End

Subroutine Output
include ‘blockcom.f’

Iﬁteger’z ijk
Real*8 KEout

C Write the system configuration to disk for restart:

Open(2, File=cfile(fcount), Form="Formatted’, Status="New’)

write (2,*) Nbnd,N

write (2,*) time,dt,cell, mu

write (2,*) kne knv,kte ktv

write (2,*) gsigmat,csigmac

write (2,*) height,width,waterlevel

write (2,*) dt*work,dt*penrg dt*idiss,dt*fdiss, keini

Doi=1,Nt
write (2,*) x(i),y(i),th(i), mass(i)
write (2,*) u(i), v(i),w(i)Jpol(i)

write (2,*) Nv(i)
Do j = 1,Nv(i)
write (2,*) r(i,j).a(i,j)
End do
End do

Keout = 0.0
Doi = Nbnd+1,Nt

KEout = KEout+0.5*(mass(i)*(u(i)**2+v(i)**2)+jpol(i)*w(i)**2)
End do
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count =0
Doi=Nbnd+1,Nt
k = Npr*(i-1)

Do j = 1,nnear(i)
k =k+1

If (status(k) .eq. ’i’) then
count = count+1

Else
if (Areap(k) .ne. 0.0) count = count+1

End If

End Do
End Do

write (2,*) count
Do i = Nbnd+1,Nt
k = Npr*(i-1)

Do j = 1,nnear(i)
k=k+1

If (status(k) .eq. ’i’) then

C Save the glued joint contact parameters:

write (2,*) i,near(k),status(k)

write (2,*) vh1(k),vh2(k),vn1(k),vn2(k)

write (2,*) slopen(k),dslopen(k),slopet(k),dslopet(k)
write (2,*) intern(k),dintern(k),intert(k),dintert(k)
write (2,*) crackt(k),crackb(k)

Else
if (Areap(k) .ne. 0.0) then

C Save the Active Collisional-contact parameters:

write (2,*) i,near(k),status(k)
write (2,*) Ftp(k),vnormp(k),vtangp(k)
write (2,*) Areap(k),dAreap(k),ElAreap(k)

end if
End If
End Do
End Do

Close(2)

C Save the system parameters and experimental results:

Open(3, File=rfile(fcount), Form="Formatted’, Status="New’)

write (3,/(a)’) "Pressure Ridge Simulation’
write (3,/(a)) "’

write (3,/(a)’) * General parameters: ’

write (3,'(a,f13.5)') "starting time ’,time-tout
write (3,'(a,f13.5)’) ‘time duration *,tout
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write (3,'(a,f13.5)’) "time step *,dt

write (3,/(a)’)**

write (3,/(a)’) " Material parameters: ’

write (3,'(a,£13.5)') ‘floe velocity *,u(Nbnd)

write (3,'(a,£13.5)') ‘lead ice thickness ’,tlead
write (3,'(a,f13.5)") “average ice density ’,rhoi
write (3,(a,f13.5)) “water density ’,rhow

write (3,'(a,£13.2)") ‘block stiffness (n) ’, kne

write (3,'(a,f13.2)") ‘block viscosity (n) *, knv

write (3,'(a,£13.2)) ‘block stiffness (t) * kte

write (3,'(a,f13.2)') 'block viscosity (1) *,ktv

write (3,'(a,f13.0)) “tens. strength (glue) ’,gsigmat
write (3,'(a,f13.0)") ‘comp. strength (coll) *,csigmac
write (3,'(a,{13.2)") “friction block /block ’,mu
write (3,/(a)")

write (3,'(a)’) ’ Energetics:

write (3,/(a,f13.2)’) 'Ridging work ‘,dt*work
write (3,'(a,f13.2)") ‘Frictional losses *,dt*fdiss
write (3,'(a,£13.2)’) 'Inelastic losses *,dt*idiss
write (3,/(a,f13.2)') ‘Potential E change ’,dt*penrg
write (3,'(a,f13.2)") ‘Change in Kin Erergy ’,KEout-KEini

Close(3)

fcount = fcount+1
toutt = 0.0

Fnd

Subroutine Overlap(ind,i,j,nx,ny,area,xcen,ycen,base)

C The Overlap subroutine calculates the overlapping area between
C a pair of polygons. It locates the centroid ot the area of

C overlap and sets up the local coordinate frame with normal

C to the plane of contact whose breadth is the base.

include ‘blockcom.f’

Integer*2 ind,i,ii,ip.j.jj,jp,k,npt,nint, tptli,tptljnadv

Real*8 dx,dy, vijx, vijy, viix,viiy, vjjx, vijy

Real*8 xprodij,xprodji,xprodijo,xprodjio,xp{odijp

Real*8 base, mag,nx,ny,xcen,ycen,Area,tArea

Real*8 xint(Nvmax),yint(Nvmax),xpt(Nvmax),ypt(Nvmax)
Character*1 lastmove,lastmovei,lastmovej

Logical done

nadv=0

nint=0
npt=0

area = 0.0
done = .false.

tptli=0
tptlj=0
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dx = x(j)-x(i)
dy = y(j)-y(i) |

i = ptli(ind)
ji = ptlj(ind)

ip = 1+mod(ii, Nv(i))
jp = 1+mod(jj, Nv(j))

viix = rx(i,ip)-rx(i,ii)

vily = ry(i,ip)-ry(i,ii)

vipe= P )

vily = ry(jp)-ry(ijj)

vijx = dx+rx(j,jj)-rx(i,ii)

vijy = dy+ry(j,j)-ry(iii)

xprodij = viix*(vijy+vjjy)-viiy*(vijx+vjjx)
aprodji = vijjx*(-vijy+viiy)-vjjy*(-vijx+viix)
xprodijo = viix*vijy-viiy*vijx

xprodjio = -vjjx*vijy+vijjy*vijx

lastmovei

lol
lastmovej = *o’

Do While (.not. drne)
nadv = nadv+1

C Cheék for intersection:

If (xprodij*xprodijo .It. 0.0 .and.
xprodji*xprodjio .It. 0.0) then
If (ii .ne. tptli .or. jj .ne. tpt1j) then
nint = nint+1
npt = npt+1
mag = abs((vijx*viiy-vijy*viix)/ (viix*viiy-vjjy*viix))
XpH(APE) = x())+x()jj}+mag?vijx
YPHIPY) = y()+ry(ijj)+ mag*vjiy
_ xint(nint) = xpt(npt)
- yint(nint) = ypt(npt)
C ptli and ptlj prevent the same intersection being saved twice:
if (nint .eq. 1) then
tptli = ii
tptlj = ii
ptli(ind) = ii

Ptlj(ind) = j
end if
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if (xprodji .gt. 0.0) then
lastmovei = '}’
lastmovej = ‘o’

else
lastmovei = ‘0
lastmovej = i’

end if

’

Else
Done = .true.

End If
End If

If (xprodij*xprodji .1t. 0.0) then
COneisinand one is out:
If (xprodij .gt. 0.0) lhen‘
Cjisin, advanceoni:
ji=ip
lastmove = ‘i’ .
Else
Ciisin advanceonj:
{ja:tgzove =5
End If
Else

C Extend vectors Vii and Vjj, make new cross-products:

mag = 1.0e30
xprodijp = viix*(vijy+mag*vijjy)-viiy*(vijx+mag*vjjx)
CBothiandjarein:
If (xprodij .gt. 0.0) then
If (xprodijp .gt. 0.0) then
C extended i is out, advance on it
fi=ip
C Point is a vertex of the overlap polygon:
If (lastmovei .eq. ‘i’) then

npt = npt+1
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xpt(npt) = x(i)+rx(i,ii)
YPH(npt) = y(i)+ry(i,ii)

End If
lastmove = ‘i’
Else

Cextended j is out, advance on j:

i=ip

CPoint is a vertex of the overlap polygon:

If (lastmovej .eq. ‘i’) then
npt = npt+1

xpt(npt) = x(j)+rx(j jj)
ypH(npt) = y()+ry(ijj)

End If
lastmove = '}’
End If
Else
CBothi and j are out:
If (xprodijp .gt. 0.0) then
Cexterided j is in, advance on j:

ji=jp

lastmove = *§’
Else
C extended i is in, advance on i:

ii=ip
lastmove = ‘i’

End If
End If
End If

C After the algorithm has made 2*(Nv(i)+Nv(j)) advances then quit:

If (nadv.ge.2*

(Nv(i)+Nv(j))) then
done = .true.

Else

C Make vectors and cross-products:




vijx = dx+mx(jjj)-rx(i,ii)
vijy = dy+ry(ijj)-ry(i,ii)

If (lastmove .eq. ‘i’ then
ip = 1+mod(ii, Nv(i))

viix = rx(i,ip)-rx(i,ii) -

" xprodijo = viix*vijy-viiy*vijx
xprodijio = xprodji

End If
If (lastmove .eq. ') then
jp = 1+modjj, Nv(j))

vije = () p)-rx()
viiy = ry(ijp)-ry(i.jj)

xprodijo = xprodij
xprodjio = -vjjx*vijy+vjjy*vijx

End If

xprodij = viix*(vijy+Vjjy)-vity*(vijx+vjjx)
xprodji = vijx*(-vijy+viiy)-vjjy*(-vijx+viix)

End If
End Do
If (npt .gt. 0) then
C Calculate area of overlap and location of centroid of area:

xcen = 0.0
ycen = 0.0

Do k = 1,npt-2

tArea = (xpt(k+ 1)xpt(1) ypt(k2)-ypt(1))-
& (PHKHT-Y P (ept ke 2)XpH(T)

xcen = xcen+tArea*(xpt(k+1)-xpt(1)+xpt(k+2)-xpt(1))
ycen = ycen+tArea®(ypt(k+1)-ypt(1)+ypt(k+2)-ypt(1))

Area = Area+tArea
End Do

xcen = xpt(1)+xcen/Area/3
ycen = ypt(1)+ycen/Area/3

Area = 0.5*Area

C Define the line of contact:
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If (nint .eq. 2) then

dx = xint(2)-xint(1)
dy = yint(2)-yint(1)

xprodij = dx*(y(i)-yint(1))-dy*(x(i)-xint(1))
End If

C Exceptional case where corners overlap, but no vertex lies within
C either biock. Choose the line for which the centers lie on opposite
C sides. More sophisticated strategies may be necessary.

If (nint .eq. 4) then

dx = xint(3)-»
dy = yint(3)-; —ens)

xprodij = dx*(y(i)-yint(1))-dy*(x(i)-xint(1))
xprodji = dx*(y(j)-yint(1))-dy*(x()-xint(1))

if (xprodij*xprodji .gt. 0.0) then

dx = xint(4)-xint(2)
dy = yint(4)-yint(2)

xprodij = dx*(y(i)-yint(2))-dy*(x(i)-xint(2))

end if
End If

C local coord frame defined by normal vector
C inwardly perpendicular to the HOME (i) polygon:

base = sqrt{dx*dx+dy*dy)

if (xprodij .It. 0.0) then
nx = dy/base
ny = -dx/base
else
nx = -dy/base
ny = dx/base
end if

End If
End

Subroutine Picture

C A rudimentary routine to make a line drawing of each polygon
Cin the system at the current time. It uses UNIX graphics primitives.

include *blockcom.f’
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Integer*2 ij,jp
Integer*4 xp(Nvmax),yp(Nvmax),xc,yc,xr,yr,range,ywl
Character*40 text

write(text,’(3,f12.4)') ‘Time: *,time
text(40:40) = char(00)

xc = 100
ye = 100
xr = 3800 -
yr = 2500

range = int(min(xr/width,yr/height))
Call openp!
Call erase

Call move(xc,2900)
Call Label(text)

ywl = yc+int(range*waterlevel)
Call line(xc,ywl,xc+xr,ywl)

doi=1Nt
doj = 1,Nv(i)
xp(j) = xc+int(range*(x(i)+rx(i,)),

yp(j) = yc+int(range*(y(i)+ry(i})))
end do

doj = 1,Nv(i)
jp = 1+mod(j,Nv(i))

Call Line(xp(),yp(G)-xpGp).yr(p))
end do

end do
Call move(1,1)

Call Closepl
tpict = 0.0

End

Subroutine Search

C This subroutine performs the Global Search

C The neighborhcod of each polygon is searched for neighbors
C The Contact subroutine is called to examine a pair (nh,nn)

C for proximate contact. See Section 2.3

C The near-neighbor list containing the indices of the Home and

C Near polygons, the collisional force and the glue force variables.
C These variables must be passed through the search procedure and
C reconnected with the correct pair of polygons if that pair of

C polygons is still found to be in contact. As the cuatacts are

C discovered the variables are matched up with the correct pair

C of polygons and the interaction list is assembled.
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C Npr spaces are allotted in the near-neighbor hist per block,
C Linked lists would be more efficient, but less straightforward.

C And memory being less of a constraint than CPU speed, it isn’t
C wortlt the trouble,

include "blockcom.f

Real*8 t1I(Npr)2(Npr)t3(Npr) t4(Npr) t5(Npr),t6(Npr)
t7(Npr) t8(Npr),t9(Npr),t10(Npr)

integer*2 thear(O:Npr),tpt1i(Npr),tpt1j(Npr),t11(Npr),t12(Npr)
t13(Npr).t14(Npr)

Integer®2 ij,k kk tnnear,ind,nn,niy

Character*1 tstatus(0:Npr)

Logical neighbor

tnear(0) = 0
tstatus(0) = 'n’

Do nh = Nbnd+1,Nt
ind = Npr*(nh-1)
C Store Near, and ~ontact variables in temporary arrays
tnnear = r near(nh)

Doi=1,t near
ind = ind+1

tnear(i) = near(ind)
tstatus(i) = status(ind)

If (status(ind) .eq. 'b’) then

tpt1i(i) = ptliind)
tptlj(i) = ptij(ind)

t1(i) = Ftp(ind)

t2(i) = vnormp(ind)
t3(i) = vtangp(ind)
t4(i) = Areap(ind)
t5(i) = dAreap(ind)
t6(i) = ElAreap(ind)

Else

t1(i) = slopen(ind)
2(i) = dslopen(ind)
t3(i) = slopet(ind)
t4(i) = dslopet(ind)
t5(i) = interr(ind)
t6(i) = dintern(ind)
t7(i) = intert(ind)
t8(i) = dintert(ind)
t9(i) » crackt(ind)
110(i) = crackb(ind)
t11(i) = vhi(ind)
t12(1) = vh2(ind)




t13(i) = vn1(ind)
t14(i) = vn2(ind)

End If
End Do

C Search the neighborhood about each polygon:

nnear(nh) = 0
ind = Npr*(nh-1)

Do i = max(1,invx(nh)-1), invx(nh)+1
Do j = max(1,invy(nh)-1), invy(nh)+1

Do k = $,ngrid(i,j)
nn = grid(i,j,k)

kk = tnnear

Do While (kk .gt. 0 .and. nn .ne. tnear(kk))
kk = kk-1

End Do

If (tstatus(kk) .eq. ‘i) then
ind = ind+1 |
C Reattach the stored glued joint variables to the correct pair:

near(ind) = nn
status(ind) = tstatus(kk)

- nnear(nh) = nnear(nh)+1

sloper(ind) = t1(kk)
dslopen(ind) = t2(kk)
slopet(ind) = t3(kk)
dslopet(ind) = t4(kk)
intern(ind) = t5(kk)
dintern(ind) = t6(kk)
intert(ind) = t7(kk)
dintert(ind) = t8(kk)
crackt(ind) = t9(kk)
crackb(ind) = t10(kk)
vhi(ind) = t11(kk)
vh2(ind) = t12(kk)
vnl(ind) = t13(kk)
vn2(ind) = t14(kk)

Else
If (nn .1t. nh) then

neighbor = .false.
Call Contact(nh,nn,neighbor)

If (neighbor) then
ind = ind+1
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near(ind) = nn
status(ind) = ‘b

nnear(nh) = nnear(nh)+1
C Reattach the stored collision variables to the correct pair:
If (tstatus(kk) .eq. 'n’) then

ptli(ind) = 1
ptlj(ind) = 1

Ftp(ind) = 0.0
vnormp(ind) = 0.0
vtangp(ind) = 0.0
Areap(ind) = 0.0
dAreap(ind) = 0.0
ElAreap(ind) = 0.0

Else

ptli(ind) = tpt1i(kk)
ptij(ind) = tptij(kk)

Ftp(ind) = t1(kk)
vnormp(ind) = t2(kk)
vtangp(ind) = t3(kk)
Areap(ind) = t4(kk)
dAreap(ind) = t5(kk)
ElAreap(ind) = t6(kk)

End If
End If
End If
End If
End Do
End Do
End Do
End Do

End




APPENDIX B: SUPPLEMENTARY SUBROUTINE FOR
CALCULATION OF THE MASS AND THE POLAR
MOMENT OF INERTIA OF A CONVEX POLYGON

PN 33 SARAAES

g d 2t )

Subroutine Mass_and_Moment(i)
include ‘blockcom.f’

Integer*2 i,k kp
Real*8 Area,sArea,xcm,ycm,ssx,ssy,mag,bl,bZ,h

C Find the mass and the location of the center of mass of block i
C Given vectors rx and ry from an arbitrary interior pomt x(i),y(i)
C to the vertices. See section 2.8 of this report.

Area=0.0
xcem = 0.0
yem = 0.0

Do k = 1,Nv(i)
kp = I+mod(k,Nv(i))

sArea = 0.5%abs(rx(i,k)*ry(i,kp)-ry(i,k)*rx(i,kp))
xem = xem+sArea*(rx (i, k)+rx(i,kp)} /3.0
yem = yem+sArea*(ry(i,k)+ry(i,kp)) /3.0
Area = Areat+sArea
End Do

xcm = xem/Area
yem = yem/Area

C The location of the center of mass of block i:’

x(i) = x(i)+xcm

y(i) = y(i)+ycm
mass(i) = rho*Area

C Vectors from the center of mass to the vertices of block i:
C Angles and Radii define the block’s shape:

Do k = 1,Nv(i)
rx(i,k) = rx(i,k)-xcm
ry(i,k) = ry(i,k)-ycm

r(i, k) = sqri(rx(i,k)**2+ry(i,k)**2)

a(i,k) = atan2(ry(i,k),rx(i k))
if (a(i,k) It 0.0) a(i,k) = ~... p+a(i,k)
End Do

C Find the polar moment of inertia of block i:
fpol(i) = 0.0

Do k = 1,Nv(i)
kp = 1+mod(k,Nv(i))
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ssx = rx(i,kp)-rx(i,k)

ssy = ry(i,kp)-ry(ik)

mag = sqri(ssx*ssx+ssy*ssy)

ssx = ssx/mag

ssy = ssy/mag

b1 = abs(ssx*rx(i,k}+ssy*ry(i,k))
b2 = abs(ssx*rx(i,kp)+ssy*ry(i.kp))
h = abs(ssx*ry(i,k)-ssy*rx(i,k))

Jpol(i) = Jpol(i)+h*(b1*(b1*b1+3.0*h*h)+b2*(b2*b2+3.0*h*h))/12.0
End Do

End




APPENDIX C: FLATLAND REVISITED

The following entertaining description of the problems of polygonal entities in a
two-dimensional world was written by Otis Walton as an addendum to his work
describing the Discrete Interacting Block System code (DIBS) (Walton 1980). It is
reprinted with his permission. ‘

In the spirit of Abbott’s 19th century mythical world of Flatland, the two-dimen-
sional world of DIBS is inhabited by beings that cannot see very far and can only
recognize their neighbors by “feeling” them. The highest social classes in Flatland are

" theregular n-gons, with a large number of sides. The high priests actually claim to be
circles. The lowest social class is composed of isosceles triangles with very small acute
angles. The size of a Flatlander’s brain is easily estimated from the size of the angle
of his vertex. , ‘

Line segments (Flatland women) and triangles with small acute angles are very
dangerous in Flatland because, when coming head on, they are hard to see and can
puncture a more normal Flatlander with a mere casual bump.

Most of the random polygons allowed in DIBS would be considered to be the most
grotesque of monsters in Flatland because of their ugly irregularity. Consequently,
most would probably be eliminated at the earliest opportunity in favor of regular
polygons of high order.

The irregular Flatland particles in DIBS show even more male chauvinism than
their regular counterparts in Flatland. Women (mere line segments) are completely
banned in DIBS, as are all small children. Line segments, being completely massless,
flit about from place to place at incredible speed—in order to be seen at all, the clocks
of the entire society have to be made to run slower than normal (the time step must
be decreased); so much slower that the entire society appears to come to a standstill,
except for these very light beings flitting about. Small children, with their low mass,
have much the same effect as almost massless women. If the society tries to exist at
normal clock speed when there are some of these little tykes about, we soon find that
they have bumped into someone and are unstably being accelerated to incredible
speeds—sometimes traveling so fast that they pass most of the way through another
body in just one tick of the society’s master clock.

For these reasons, the population in this new irregular Flatland is restricted so that
from the smallest to the : .est being is no more that 2 orders of magnitude change
in size (mass). Preferablv, . 1 beings will be even closer to the same size than that. A
few unusually large being. are OK, but never should the population include only a
few very small beings in a s1.uation where most of the others are large.

69

#U.8. GOVERNMENT PRINTING OFFICE: 1993- 700-069 /60039




' REPORT DOCUMENTATION PAGE e 1188

Public reporting burden for ihis collection ol nformation 1s estimaled 10 average 1 Nour |7 response, including the Ume J0f reviewing INSIniClions, searcning existing dala sources, gathenng and
mainaining the data needed. and completing and reviewing the collection of information. Send commants regarding th,~ burden estimate or any other aspect of this coilection of information,
including suggestion for reducing this burden, to Washington Headguarters Services, Direc’orate for Information Operations and Reports, 1215 Jetlerson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Otfice of Managemant and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992
4. TITLE AND SUBTITLE ' 5. FUNDING NUMBERS

Numerical Simulation of Systems of Multitudinous Polygonal Blocks '

N00014-86-K-K069

6. AUTHORS
Mark A. Hopkins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSI(ES) 8. PERFORMING ORGANIZATION
i . REPORT NUMBER .
U.S. Army Cold Regions Research and Engineering Laboratory CRREL Report 92-22
72 Lyme Road
Hanover, N.H. 03755-1290
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
: AGENCY REPORT NUMBER
Office of Naval Research

800 M. Quincy St.
Arlington, VA 22217-5000

11, SUPPLEMENTARY NOTFS

12a. DISTRISUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

Available frorn NTIS. Springfield, Virginia 22161.

13. ABSTRACT (Maximum 20.” words)

14. SUBJECT TERMS 15. NUMBER OF PAGES
Discrete element method Ice ridging Pressure ridging 74
Ice mechanics Particle simulation 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 ‘ Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Sid. 239-18
28.102




